科目: 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在極坐標(biāo)系中,已知曲線,將曲線上的點(diǎn)向左平移一個單位,然后縱坐標(biāo)不變,橫坐標(biāo)軸伸長到原來的2倍,得到曲線,又已知直線(是參數(shù)),且直線與曲線交于兩點(diǎn).
(I)求曲線的直角坐標(biāo)方程,并說明它是什么曲線;
(II)設(shè)定點(diǎn),求.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知橢圓的一個頂點(diǎn)和兩個焦點(diǎn)構(gòu)成的三角形的面積為4.
(1)求橢圓的方程;
(2)已知直線與橢圓交于、兩點(diǎn),試問,是否存在軸上的點(diǎn),使得對任意的,為定值,若存在,求出點(diǎn)的坐標(biāo),若不存在,說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】設(shè)函數(shù)的定義域?yàn)?/span>,如果存在非零常數(shù),對于任意,都有,則稱函數(shù)是“似周期函數(shù)”,非零常數(shù)為函數(shù)的“似周期”.現(xiàn)有下面四個關(guān)于“似周期函數(shù)”的命題:
①如果“似周期函數(shù)”的“似周期”為,那么它是周期為2的周期函數(shù);
②函數(shù)是“似周期函數(shù)”;
③如果函數(shù)是“似周期函數(shù)”,那么“或”.
以上正確結(jié)論的個數(shù)是( )
A.0B.1C.2D.3
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在三棱錐P-ABC中,PA⊥底面ABC,△ABC是直角三角形,且PA=AB=AC.又平面QBC垂直于底面ABC.
(1)求證:PA∥平面QBC;
(2)若PQ⊥平面QBC,求銳二面角Q-PB-A的余弦值.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在四棱錐中,底面為菱形,,側(cè)棱底面,,點(diǎn)為的中點(diǎn),作,交于點(diǎn).
(1)求證:平面;
(2)求證:;
(3)求二面角的余弦值.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知在平面直角坐標(biāo)系中,直線l的參數(shù)方程為(為參數(shù)),曲線的方程為.以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系.
(1)求直線l和曲線的極坐標(biāo)方程;
(2)曲線分別交直線和曲線于點(diǎn),求的最大值及相應(yīng)的的值.
查看答案和解析>>
科目: 來源: 題型:
【題目】一袋中有大小、形狀相同的2個白球和10個黑球,從中任取一球.如果取出白球,則把它放回袋中;如果取出黑球,則該球不再放回,另補(bǔ)一個白球放到袋中.在重復(fù)次這樣的操作后,記袋中的白球個數(shù)為.
(1)求;
(2)設(shè),求;
(3)證明:.
查看答案和解析>>
科目: 來源: 題型:
【題目】一個口袋內(nèi)有個不同的紅球,個不同的白球,
(1)從中任取個球,紅球的個數(shù)不比白球少的取法有多少種?
(2)若取一個紅球記分,取一個白球記分,從中任取個球,使總分不少于分的取法有多少種?
查看答案和解析>>
科目: 來源: 題型:
【題目】已知拋物線上點(diǎn)處的切線方程為.
(Ⅰ)求拋物線的方程;
(Ⅱ)設(shè)和為拋物線上的兩個動點(diǎn),其中且,線段的垂直平分線與軸交于點(diǎn),求面積的最大值.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知橢圓:的左、右焦點(diǎn)分別為,,左頂點(diǎn)為,離心率為,點(diǎn)是橢圓上的動點(diǎn),的面積的最大值為.
(1)求橢圓的方程;
(2)設(shè)經(jīng)過點(diǎn)的直線與橢圓相交于不同的兩點(diǎn),,線段的中垂線為.若直線與直線相交于點(diǎn),與直線相交于點(diǎn),求的最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com