科目: 來源: 題型:
【題目】已知橢圓,、為橢圓的左、右焦點,為橢圓上一點,且.
(1)求橢圓的標準方程;
(2)設直線,過點的直線交橢圓于、兩點,線段的垂直平分線分別交直線、直線于、兩點,當最小時,求直線的方程.
查看答案和解析>>
科目: 來源: 題型:
【題目】一家商場銷售一種商品,該商品一天的需求量在范圍內等可能取值,該商品的進貨量也在范圍內取值(每天進貨1次).這家商場每銷售一件該商品可獲利60元;若供不應求,可從其他商店調撥,銷售一件該商品可獲利40元;若供大于求,剩余的每處理一件該商品虧損20元.設該商品每天的需求量為,每天的進貨量為件,該商場銷售該商品的日利潤為元.
(1)寫出這家商場銷售該商品的日利潤為關于需求量的函數表達式;
(2)寫出供大于求,銷售件商品時,日利潤的分布列;
(3)當進貨量多大時,該商場銷售該商品的日利潤的期望值最大?并求出日利潤的期望值的最大值.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,四棱錐中,側面是邊長為2的等邊三角形且垂直于底面,,,是的中點.
(1)求證:直線平面;
(2)點在棱上,且二面角的余弦值為,求直線與底面所成角的正弦值.
查看答案和解析>>
科目: 來源: 題型:
【題目】某商場舉行有獎促銷活動,顧客購買一定金額商品后即可抽獎,每次抽獎都從裝有4個紅球、6個白球的甲箱和裝有5個紅球、5個白球的乙箱中,各隨機摸出1個球,在摸出的2個球中,若都是紅球,則獲一等獎;若只有1個紅球,則獲二等獎;若沒有紅球,則不獲獎.
(1)求顧客抽獎1次能獲獎的概率;
(2)若某顧客有3次抽獎機會,記該顧客在3次抽獎中獲一等獎的次數為,求的分布列和數學期望.
查看答案和解析>>
科目: 來源: 題型:
【題目】某小學要求下午放學后的17:00-18:00接學生回家,該學生家長從下班后到達學校(隨機)的時間為17:30-18:30,則該學生家長從下班后,在學校規(guī)定時間內接到孩子的概率為( )
A.B.C.D.
查看答案和解析>>
科目: 來源: 題型:
【題目】自新型冠狀病毒疫情爆發(fā)以來,人們時刻關注疫情,特別是治愈率,治愈率累計治愈人數/累計確診人數,治愈率的高低是“戰(zhàn)役”的重要數據,由于確診和治愈人數在不斷變化,那么人們就非常關心第天的治愈率,以此與之前的治愈率比較,來推斷在這次“戰(zhàn)役”中是否有了更加有效的手段,下面是一段計算治愈率的程序框圖,請同學們選出正確的選項,分別填入①②兩處,完成程序框圖.( )
:第天新增確診人數;:第天新增治愈人數;:第天治愈率
A.,B.,
C.,D.,
查看答案和解析>>
科目: 來源: 題型:
【題目】2019年10月1日,慶祝中華人民共和國成立70周年大會、閱兵式、群眾游行在北京隆重舉行,這次閱兵編59個方(梯)隊和聯合軍樂團,總規(guī)模約1.5萬人,各型飛機160余架、裝備580余套,是近幾次閱兵中規(guī)模最大的一次.某機構統(tǒng)計了觀看此次閱兵的年齡在30歲至80歲之間的100個觀眾,按年齡分組:第1組,第2組,第3組,第4組,第5組,得到的頻率分布直方圖如圖所示.
(1)求的值及這100個人的平均年齡(同一組中的數據用該組區(qū)間的中點值為代表);
(2)用分層抽樣的方法在年齡為、的人中抽取5人,再從抽取的5人中隨機抽取2人接受采訪,求接受采訪的2人中年齡在的恰有1人的概率.
查看答案和解析>>
科目: 來源: 題型:
【題目】科赫曲線是一種外形像雪花的幾何曲線,一段科赫曲線可以通過下列操作步驟構造得到,任畫一條線段,然后把它均分成三等分,以中間一段為邊向外作正三角形,并把中間一段去掉,這樣,原來的一條線段就變成了4條小線段構成的折線,稱為“一次構造”;用同樣的方法把每條小線段重復上述步驟,得到16條更小的線段構成的折線,稱為“二次構造”,…,如此進行“次構造”,就可以得到一條科赫曲線.若要在構造過程中使得到的折線的長度達到初始線段的1000倍,則至少需要通過構造的次數是( ).(取,)
A.16B.17C.24D.25
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com