相關(guān)習(xí)題
 0  265661  265669  265675  265679  265685  265687  265691  265697  265699  265705  265711  265715  265717  265721  265727  265729  265735  265739  265741  265745  265747  265751  265753  265755  265756  265757  265759  265760  265761  265763  265765  265769  265771  265775  265777  265781  265787  265789  265795  265799  265801  265805  265811  265817  265819  265825  265829  265831  265837  265841  265847  265855  266669 

科目: 來源: 題型:

【題目】已知橢圓C,(ab0)過點(1,)且離心率為

1)求橢圓C的方程;

(2)設(shè)橢圓C的右頂點為P,過定點(2,﹣1)的直線lykx+m與橢圓C相交于異于點PA,B兩點,若直線PAPB的斜率分別為k1,k2,求k1+k2的值.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知RtABC如圖(1),∠C90°D.E分別是AC,AB的中點,將△ADE沿DE折起到PDE位置(即A點到P點位置)如圖(2)使∠PDC60°

1)求證:BCPC

(2)若BC2CD4,求點D到平面PBE的距離.

查看答案和解析>>

科目: 來源: 題型:

【題目】中央政府為了應(yīng)對因人口老齡化而造成的勞動力短缺等問題,擬定出臺延遲退休年齡政策.為了了解人們對延遲退休年齡政策的態(tài)度,責(zé)成人社部進(jìn)行調(diào)研.人社部從網(wǎng)上年齡在1565歲的人群中隨機調(diào)查100人,調(diào)查數(shù)據(jù)的頻率分布直方圖和支持延遲退休的人數(shù)與年齡的統(tǒng)計結(jié)果如下:

1)由以上統(tǒng)計數(shù)據(jù)填2×2列聯(lián)表,并判斷能否在犯錯誤的概率不超過0.05的前提下認(rèn)為以45歲為分界點的不同人群對延遲退休年齡政策的支持度有差異;

(2)從調(diào)查的100人中年齡在15252535兩組按分層抽樣的方法抽取6人參加某項活動現(xiàn)從這6人中隨機抽2人,求這2人中至少1人的年齡在2535之間的概率.

參考數(shù)據(jù):

其中na+b+c+d

查看答案和解析>>

科目: 來源: 題型:

【題目】已知曲線的參數(shù)方程為為參數(shù)),以坐標(biāo)原點為極點,軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.

1)寫出曲線的極坐標(biāo)方程,并求出曲線公共弦所在直線的極坐標(biāo)方程;

2)若射線與曲線交于兩點,與曲線交于點,且,求的值.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知函數(shù).

1)證明:當(dāng)時,函數(shù)在區(qū)間上單調(diào)遞增;

2)若時,恒成立,求的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知正項數(shù)列的前項和為,若,.

1)證明:當(dāng)時,;

2)求數(shù)列的通項公式;

3)設(shè),求數(shù)列的前項和.

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖所示,四棱錐的底面是直角梯形,平面,,中點,且.

1)求證:平面

2)若與底面所成角為,求二面角的余弦值.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知定義在上的偶函數(shù)滿足,且時,,則函數(shù)上的所有零點之和為(

A.B.C.D.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知圓,過直線上第一象限內(nèi)的一動點作圓的兩條切線,切點分別為,兩點的直線與坐標(biāo)軸分別交于兩點,則面積的最小值為(

A.B.C.D.

查看答案和解析>>

科目: 來源: 題型:

【題目】有限個元素組成的集合為,,集合中的元素個數(shù)記為,定義,集合的個數(shù)記為,當(dāng),稱集合具有性質(zhì).

(1)設(shè)集合具有性質(zhì),判斷集合中的三個元素是否能組成等差數(shù)列,請說明理由;

(2) 設(shè)正數(shù)列的前項和為,滿足,其中,數(shù)列中的前項:組成的集合記作,將集合中的所有元素從小到大排序,即滿足,求;

(3) 己知集合,其中數(shù)列是等比數(shù)列,,且公比是有理數(shù),判斷集合是否具有性質(zhì),說明理由.

查看答案和解析>>

同步練習(xí)冊答案