相關(guān)習(xí)題
 0  266279  266287  266293  266297  266303  266305  266309  266315  266317  266323  266329  266333  266335  266339  266345  266347  266353  266357  266359  266363  266365  266369  266371  266373  266374  266375  266377  266378  266379  266381  266383  266387  266389  266393  266395  266399  266405  266407  266413  266417  266419  266423  266429  266435  266437  266443  266447  266449  266455  266459  266465  266473  266669 

科目: 來源: 題型:

【題目】某小學(xué)為了了解該校學(xué)生課外閱讀的情況,在該校三年級學(xué)生中隨機抽取了20名男生和20名女生進行調(diào)查,得到他們在過去一整年內(nèi)各自課外閱讀的書數(shù)(),并根據(jù)統(tǒng)計結(jié)果繪制出如圖所示的莖葉圖.

如果某學(xué)生在過去一整年內(nèi)課外閱讀的書數(shù)()不低于90本,則稱該學(xué)生為書蟲

1)根據(jù)頻率分布直方圖填寫下面列聯(lián)表,并據(jù)此資料,在犯錯誤的概率不超過10%的前提下,你是否認(rèn)為書蟲與性別有關(guān)?

男生

女生

總計

書蟲

非書蟲

總計

附:

0.25

0.15

0.10

0.05

0.025

k

1.323

2.072

2.706

3.814

5.024

2)在所抽取的20名女生中,從過去一整年內(nèi)課外閱讀的書數(shù)()不低于86本的學(xué)生中隨機抽取兩名,求抽出的兩名學(xué)生都是書蟲的概率.

查看答案和解析>>

科目: 來源: 題型:

【題目】三棱錐中,點P斜邊AB上一點.給出下列四個命題:

①若平面ABC,則三棱錐的四個面都是直角三角形;

②若S在平面ABC上的射影是斜邊AB的中點P,則有;

③若,,,平面ABC,則面積的最小值為3;

④若,,,平面ABC,則三棱錐的外接球體積為

其中正確命題的序號是__________(把你認(rèn)為正確命題的序號都填上)

查看答案和解析>>

科目: 來源: 題型:

【題目】我國著名的數(shù)學(xué)家秦九韶在《數(shù)書九章》提出了三斜求積術(shù).他把三角形的三條邊分別稱為小斜、中斜和大斜.三斜求積術(shù)就是用小斜平方加上大斜平方,送到中斜平方,取相減后余數(shù)的一半,自乘而得一個數(shù),小斜平方乘以大斜平方,送到上面得到的那個數(shù),相減后余數(shù)被4除,所得的數(shù)作為,1作為,開平方后即得面積.所謂、指的是在方程中,p,q.即若的大斜、中斜、小斜分別為a,b,c,則.已知點DAB上一點,,,,則的面積為________

查看答案和解析>>

科目: 來源: 題型:

【題目】以直角坐標(biāo)系的原點為極點,x軸的正半軸為極軸,建立坐標(biāo)系,兩個坐標(biāo)系取相同的單位長度.已知直線的參數(shù)方程為,曲線的極坐標(biāo)方程為

(1)求曲線的直角坐標(biāo)方程

(2)設(shè)直線與曲線相交于兩點,時,求的值.

查看答案和解析>>

科目: 來源: 題型:

【題目】某公司計劃購買2臺機器,該種機器使用三年后即被淘汰.機器有一易損零件,在購進機器時,可以額外購買這種零件作為備件,每個200.在機器使用期間,如果備件不足再購買,則每個500.現(xiàn)需決策在購買機器時應(yīng)同時購買幾個易損零件,為此搜集并整理了100臺這種機器在三年使用期內(nèi)更換的易損零件數(shù),得下面柱狀圖:

以這100臺機器更換的易損零件數(shù)的頻率代替1臺機器更換的易損零件數(shù)發(fā)生的概率,記表示2臺機器三年內(nèi)共需更換的易損零件數(shù),表示購買2臺機器的同時購買的易損零件數(shù).

)求的分布列;

)若要求,確定的最小值;

)以購買易損零件所需費用的期望值為決策依據(jù),在之中選其一,應(yīng)選用哪個?

查看答案和解析>>

科目: 來源: 題型:

【題目】中心在原點,焦點在軸上的橢圓,下頂點,且離心率.

(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;

(Ⅱ)經(jīng)過點且斜率為的直線交橢圓于, 兩點.在軸上是否存在定點,使得恒成立?若存在,求出點坐標(biāo);若不存在,說明理由.

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,直線與橢圓交于兩點,是橢圓右頂點,已知直線的斜率為的外接圓半徑為.

(1)求橢圓的方程;

(2)若橢圓上有兩點,使的平分線垂直,且,求直線的方程.

查看答案和解析>>

科目: 來源: 題型:

【題目】某工廠有25周歲以上(含25周歲)工人300名,25周歲以下工人200.為研究工人的日平均生產(chǎn)量是否與年齡有關(guān),現(xiàn)采用分層抽樣的方法,從中抽取了100名工人,先統(tǒng)計了他們某月的日平均生產(chǎn)件數(shù),然后按工人年齡在“25周歲以上(含25周歲)”和“25周歲以下”分為兩組,再將兩組工人的日平均生產(chǎn)件數(shù)分成5組:分別加以統(tǒng)計,得到如圖所示的頻率分布直方圖.

1)從樣本中日平均生產(chǎn)件數(shù)不足60的工人中隨機抽取2人,求至少抽到一名“25周歲以下組”工人的概率;

2)規(guī)定日平均生產(chǎn)件數(shù)不少于80的為“生產(chǎn)能手”,請你根據(jù)已知條件完成2×2列聯(lián)表,并判斷是否有90%的把握認(rèn)為“生產(chǎn)能手與工人所在的年齡組有關(guān)”?

P

0.100

0.050

0.010

0.001

2.706

3.841

6.635

10.828

附:

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,在四棱錐中,底面是平行四邊形,,側(cè)面底面,.

(Ⅰ)求證:平面;

(Ⅱ)過的平面交于點,若平面把四面體分成體積相等的兩部分,求二面角的余弦值.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知

(Ⅰ)當(dāng)時,求的極值;

(Ⅱ)若有2個不同零點,求的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案