科目: 來源: 題型:
【題目】某手機生產企業(yè)為了對研發(fā)的一批最新款手機進行合理定價,將該款手機按事先擬定的價格進行試銷,得到單價(單位:千元)與銷量(單位:百件)的關系如下表所示:
單價(千元) | 1 | 1.5 | 2 | 2.5 | 3 |
銷量(百件) | 10 | 8 | 7 | 6 |
已知.
(Ⅰ)若變量,具有線性相關關系,求產品銷量(百件)關于試銷單價(千元)的線性回歸方程;
(Ⅱ)用(Ⅰ)中所求的線性回歸方程得到與對應的產品銷量的估計值,當銷售數(shù)據(jù)對應的殘差滿足時,則稱為一個“好數(shù)據(jù)”,現(xiàn)從5個銷售數(shù)據(jù)中任取3個,求其中“好數(shù)據(jù)”的個數(shù)的分布列和數(shù)學期望.
參考公式:,.
查看答案和解析>>
科目: 來源: 題型:
【題目】設,為兩個平面,命題:的充要條件是內有無數(shù)條直線與平行;命題:的充要條件是內任意一條直線與平行,則下列說法正確的是( )
A.“”為真命題B.“”為真命題
C.“”為真命題D.“”為真命題
查看答案和解析>>
科目: 來源: 題型:
【題目】某公司為了鼓勵運動提高所有用戶的身體素質,特推出一款運動計步數(shù)的軟件,所有用戶都可以通過每天累計的步數(shù)瓜分紅包,大大增加了用戶走步的積極性,所以該軟件深受廣大用戶的歡迎.該公司為了研究“日平均走步數(shù)和性別是否有關”,統(tǒng)計了2019年1月份所有用戶的日平均步數(shù),規(guī)定日平均步數(shù)不少于8000的為“運動達人”,步數(shù)在8000以下的為“非運動達人”,采用按性別分層抽樣的方式抽取了100個用戶,得到如下列聯(lián)表:
運動達人 | 非運動達人 | 總計 | |
男 | 35 | 60 | |
女 | 26 | ||
總計 | 100 |
(1)(i)將列聯(lián)表補充完整;
(ii)據(jù)此列聯(lián)表判斷,能否有的把握認為“日平均走步數(shù)和性別是否有關”?
(2)從樣本中的運動達人中抽取7人參加“幸運抽獎”活動,通過抽獎共產生2位幸運用戶,求這2位幸運用戶恰好男用戶和女用戶各一位的概率.
附:
查看答案和解析>>
科目: 來源: 題型:
【題目】我國古代名著《張丘建算經》中記載:“今有方錐下廣二丈,高三丈,欲斬末為方亭;令上方六尺:問亭方幾何?”大致意思是:有一個四棱錐下底邊長為二丈,高三丈;現(xiàn)從上面截取一段,使之成為正四棱臺狀方亭,且四棱臺的上底邊長為六尺,則該正四棱臺的高為________尺,體積是_______立方尺(注:1丈=10尺).
查看答案和解析>>
科目: 來源: 題型:
【題目】疫情爆發(fā)以來,相關疫苗企業(yè)發(fā)揮專業(yè)優(yōu)勢與技術優(yōu)勢爭分奪秒開展疫苗研發(fā).為測試疫苗的有效性(若疫苗有效的概率小于90%,則認為測試沒有通過),選定2000個樣本分成三組,測試結果如“下表:
組 | 組 | 組 | |
疫苗有效 | 673 | ||
疫苗無效 | 77 | 90 |
已知在全體樣本中隨機抽取1個,抽到組疫苗有效的概率是0.33.
(1)求,的值;
(2)現(xiàn)用分層抽樣的方法在全體樣本中抽取360個測試結果,求組應抽取多少個?
(3)已知,,求疫苗能通過測試的概率.
查看答案和解析>>
科目: 來源: 題型:
【題目】在直角坐標系中,曲線的參數(shù)方程為(為參數(shù)),將曲線上各點縱坐標伸長到原來的2倍(橫坐標不變)得到曲線,以坐標原點為極點,軸正半軸為極軸,建立極坐標系,直線的極坐標方程為.
(1)寫出的極坐標方程與直線的直角坐標方程;
(2)曲線上是否存在不同的兩點,(以上兩點坐標均為極坐標,,),使點、到的距離都為3?若存在,求的值;若不存在,請說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】某學校為了解全校學生的體重情況,從全校學生中隨機抽取了100 人的體重數(shù)據(jù),得到如下頻率分布直方圖,以樣本的頻率作為總體的概率.
(1)估計這100人體重數(shù)據(jù)的平均值和樣本方差;(結果取整數(shù),同一組中的數(shù)據(jù)用該組區(qū)間的中點值作代表)
(2)從全校學生中隨機抽取3名學生,記為體重在的人數(shù),求的分布列和數(shù)學期望;
(3)由頻率分布直方圖可以認為,該校學生的體重近似服從正態(tài)分布.若,則認為該校學生的體重是正常的.試判斷該校學生的體重是否正常?并說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】在直角坐標系中,曲線的參數(shù)方程為(為參數(shù)),將曲線上各點縱坐標伸長到原來的2倍(橫坐標不變)得到曲線,以坐標原點為極點,軸正半軸為極軸,建立極坐標系,直線的極坐標方程為.
(1)寫出的極坐標方程與直線的直角坐標方程;
(2)曲線上是否存在不同的兩點,(以上兩點坐標均為極坐標,,),使點、到的距離都為3?若存在,求的值;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com