科目: 來源: 題型:
【題目】如圖,四棱錐P-ABCD中,PD⊥平面ABCD,PD=DC=BC=1,AB=2,AB∥DC,∠BCD=900
(1)求證:PC⊥BC
(2)求點A到平面PBC的距離
查看答案和解析>>
科目: 來源: 題型:
【題目】在直角坐標(biāo)中,圓,圓。
(Ⅰ)在以O為極點,x軸正半軸為極軸的極坐標(biāo)系中,分別寫出圓的極坐標(biāo)方程,并求出圓的交點坐標(biāo)(用極坐標(biāo)表示);
(Ⅱ)求圓的公共弦的參數(shù)方程。
查看答案和解析>>
科目: 來源: 題型:
【題目】設(shè)函數(shù),,
(1)求曲線過原點的切線方程;
(2)設(shè),若函數(shù)的導(dǎo)函數(shù)存在兩個不同的零點,,求實數(shù)的范圍:
(3)在(2)的條件下證明:
查看答案和解析>>
科目: 來源: 題型:
【題目】在新冠病毒肆虐全球的大災(zāi)難面前,中國全民抗疫,眾志成城,取得了階段性勝利,為世界彰顯了榜樣力量.為慶祝戰(zhàn)疫成功并且盡快恢復(fù)經(jīng)濟(jì),某網(wǎng)絡(luò)平臺的商家進(jìn)行有獎促銷活動,顧客購物消費(fèi)每滿600元,可選擇直接返回60元現(xiàn)金或參加一次答題返現(xiàn),答題返現(xiàn)規(guī)則如下:電腦從題庫中隨機(jī)選出一題目讓顧客限時作答,假設(shè)顧客答對的概率都是0.4,若答對題目就可獲得120元返現(xiàn)獎勵,若答錯,則沒有返現(xiàn).假設(shè)顧客答題的結(jié)果相互獨立.
(1)若某顧客購物消費(fèi)1800元,作為網(wǎng)絡(luò)平臺的商家,通過返現(xiàn)的期望進(jìn)行判斷,是希望顧客直接選擇返回180元現(xiàn)金,還是選擇參加3次答題返現(xiàn)?
(2)若某顧客購物消費(fèi)7200元并且都選擇參加答題返現(xiàn),請計算該顧客答對多少次概率最大,最有可能返回多少現(xiàn)金?
查看答案和解析>>
科目: 來源: 題型:
【題目】牛頓迭代法(Newtonsmethod)又稱牛頓-拉夫遜方法(Newton-Raphsonmethod),是牛頓在17世紀(jì)提出的一種近似求方程根的方法.如圖,設(shè)是的根,選取作為初始近似值,過點作曲線的切線,與軸的交點的橫坐標(biāo),稱是的一次近似值,過點作曲線的切線,則該切線與軸的交點的橫坐標(biāo)為,稱是的二次近似值.重復(fù)以上過程,得到的近似值序列.請你寫出的次近似值與的次近似值的關(guān)系式______,若,取作為的初始近似值,試求的一個根的三次近似值______(請用分?jǐn)?shù)做答).
查看答案和解析>>
科目: 來源: 題型:
【題目】2020年疫情的到來給我們生活學(xué)習(xí)等各方面帶來種種困難.為了順利迎接高考,省里制定了周密的畢業(yè)年級復(fù)學(xué)計劃.為了確保安全開學(xué),全省組織畢業(yè)年級學(xué)生進(jìn)行核酸檢測的篩查.學(xué)生先到醫(yī)務(wù)室進(jìn)行咽拭子檢驗,檢驗呈陽性者需到防疫部門做進(jìn)一步檢測.已知隨機(jī)抽一人檢驗呈陽性的概率為0.2%,且每個人檢驗是否呈陽性相互獨立,若該疾病患病率為0.1%,且患病者檢驗呈陽性的概率為99%.若某人檢驗呈陽性,則他確實患病的概率( )
A.0.99%B.99%C.49.5%.D.36.5%
查看答案和解析>>
科目: 來源: 題型:
【題目】我們可從這個商標(biāo)中抽象出一個如圖靠背而坐的兩條優(yōu)美的曲線,下列函數(shù)中大致可“完美”局部表達(dá)這對曲線的函數(shù)是( )
A.B.
C.D.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,三棱錐中,底面△是邊長為2的正三角形,,底面,點分別為,的中點.
(1)求證:平面平面;
(2)在線段上是否存在點,使得三棱錐體積為?若存在,確定點的位置;若不存在,請說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】某中學(xué)某社團(tuán)為研究高三學(xué)生課下鉆研數(shù)學(xué)時間與數(shù)學(xué)考試中的解答題得分的關(guān)系,隨機(jī)調(diào)查了某中學(xué)高三某班名學(xué)生每周課下鉆研數(shù)學(xué)時間(單位:小時)與高三下學(xué)期期中考試數(shù)學(xué)解答題得分,數(shù)據(jù)如下表:
2 | 4 | 6 | 8 | 10 | 12 | |
30 | 38 | 44 | 48 | 50 | 54 |
(1)根據(jù)上述數(shù)據(jù),求出數(shù)學(xué)考試中的解答題得分與該學(xué)生課下鉆研數(shù)學(xué)時間的線性回歸方程,并預(yù)測某學(xué)生每周課下鉆研數(shù)學(xué)時間為小時其數(shù)學(xué)考試中的解答題得分;
(2)從這人中任選人,求人中至少有人課下鉆研數(shù)學(xué)時間不低于小時的概率.
參考公式:,其中, ;參考數(shù)據(jù):
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com