相關(guān)習(xí)題
 0  28414  28422  28428  28432  28438  28440  28444  28450  28452  28458  28464  28468  28470  28474  28480  28482  28488  28492  28494  28498  28500  28504  28506  28508  28509  28510  28512  28513  28514  28516  28518  28522  28524  28528  28530  28534  28540  28542  28548  28552  28554  28558  28564  28570  28572  28578  28582  28584  28590  28594  28600  28608  266669 

科目: 來源: 題型:

精英家教網(wǎng)已知矩形紙片ABCD中,AB=6cm,AD=12cm,將矩形紙片的右下角折起,使該角的頂點(diǎn)B落在矩形的邊AD上,且折痕MN的兩端點(diǎn)M、N分別位于邊AB、BC上,設(shè)∠MNB=θ,MN=l.
(1)試將l表示成θ的函數(shù);
(2)求l的最小值.

查看答案和解析>>

科目: 來源: 題型:

定義:對于區(qū)間I內(nèi)可導(dǎo)的函數(shù)y=f(x),若?x0∈I,使f(x0)=f′(x0)=0,則稱x0為函數(shù)y=f(x)的新駐點(diǎn).已知函數(shù)f(x)=ax-x.
(Ⅰ)若函數(shù)y=f(x)存在新駐點(diǎn),求新駐點(diǎn)x0,并求此時(shí)a的值;
(Ⅱ)若f(x)≥0恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

已知橢圓
x2
a2
+
y2
b2
=1
(a>b>0)
(1)當(dāng)橢圓的離心率e=
1
2
,一條準(zhǔn)線方程為x=4 時(shí),求橢圓方程;
(2)設(shè)P(x,y)是橢圓上一點(diǎn),在(1)的條件下,求z=x+2y的最大值及相應(yīng)的P點(diǎn)坐標(biāo).
(3)過B(0,-b)作橢圓
x2
a2
+
y2
b2
=1
(a>b>0)的弦,若弦長的最大值不是2b,求橢圓離心率的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

已知函數(shù)f(x)=x3+ax2+bx+a2(a>0)在x=1處有極值10.
(1)求a、b的值;
(2)求f(x)的單調(diào)區(qū)間;
(3)求f(x)在[0,4]上的最大值與最小值.

查看答案和解析>>

科目: 來源: 題型:

1、已知復(fù)數(shù)z=m(m-1)+(m2+2m-3)i,當(dāng)實(shí)數(shù)m取什么值時(shí),復(fù)數(shù)z是:
(1)零;(2)純虛數(shù);。3)z=2+5i.
2、設(shè)復(fù)數(shù)z滿足|z|=1,且(3+4i)•z是純虛數(shù),求
.
z

查看答案和解析>>

科目: 來源: 題型:

過原點(diǎn)向曲線y=x3+2x2+a可作三條切線,則實(shí)數(shù)a的取值范圍是
 

查看答案和解析>>

科目: 來源: 題型:

13、類比平面幾何中的勾股定理:若直角三角形ABC中的兩邊AB、AC互相垂直,則三角形三邊長滿足關(guān)系:AB2+AC2=BC2.若三棱錐A-BCD的三個(gè)側(cè)面ABC、ACD、ADB兩兩互相垂直,則三棱錐的側(cè)面積與底面積滿足的關(guān)系為
SBCD2=SABC2+SACD2+SADB2

查看答案和解析>>

科目: 來源: 題型:

已知函數(shù)f(x)=sinx,對于滿足0<x1<x2<π的任意x1,x2,給出下列結(jié)論:
①(x2-x1)[f(x2)-f(x1)]>0;②x2f(x1)>x1f(x2);③f(x2)-f(x1)<x2-x1;④
f(x1)+f(x2)
2
<f(
x1+x2
2
)
,
其中正確結(jié)論的個(gè)數(shù)為
 

查看答案和解析>>

科目: 來源: 題型:

有下列命題:
①雙曲線
x2
25
-
y2
9
=1
與橢圓
x2
35
+y2=1
有相同的焦點(diǎn);
②“-
1
2
<x<0
”是“2x2-5x-3<0”必要不充分條件;
③“若xy=0,則x、y中至少有一個(gè)為0”的否命題是真命題.;
④若p是q的充分條件,r是q的必要條件,r是s的充要條件,則s是p的必要條件;
其中是真命題的有:
 
.(把你認(rèn)為正確命題的序號都填上)

查看答案和解析>>

科目: 來源: 題型:

制作容積為定值的無蓋 圓柱形金屬容器時(shí),為使材料最省,圓柱的高與底面半徑之比應(yīng)為
 

查看答案和解析>>

同步練習(xí)冊答案