相關(guān)習(xí)題
 0  31193  31201  31207  31211  31217  31219  31223  31229  31231  31237  31243  31247  31249  31253  31259  31261  31267  31271  31273  31277  31279  31283  31285  31287  31288  31289  31291  31292  31293  31295  31297  31301  31303  31307  31309  31313  31319  31321  31327  31331  31333  31337  31343  31349  31351  31357  31361  31363  31369  31373  31379  31387  266669 

科目: 來源: 題型:

給出下列四個函數(shù)①f(x)=x2+1; ②f(x)=lnx;③f(x)=e-x;④f(x)=sinx.其中滿足:“對任意x1,x2∈(1,2)(x1≠x2),|f(x1)-f(x2)|<|x1-x2|總成立”的是
 

查看答案和解析>>

科目: 來源: 題型:

已知{an}滿足a1=a2=1,
an+2
an+1
-
an+1
an
=1
,則a6-a5的值為
 

查看答案和解析>>

科目: 來源: 題型:

已知實數(shù)x,y滿足不等式組
x≥0
y≥0
x+y≤1
,則x2+y2-2x-2y的最小值為
 

查看答案和解析>>

科目: 來源: 題型:

已知存在實數(shù)ω,φ(其中ω≠0,ω∈Z)使得函數(shù)f(x)=2cos(ωx+φ)是奇函數(shù),且在(0,
π4
)上是增函數(shù).
(1)試用觀察法猜出兩組ω與φ的值,并驗證其符合題意;
(2)求出所有符合題意的ω與φ的值.

查看答案和解析>>

科目: 來源: 題型:

已知函數(shù)y=f(x)滿足f(a-tanθ)=cotθ-1,(其中,a、θ∈R均為常數(shù))
(1)求函數(shù)y=f(x)的解析式;
(2)利用函數(shù)y=f(x)構(gòu)造一個數(shù)列{xn},方法如下:
對于給定的定義域中的x1,令x2=f(x1),x3=f(x2),…,xn=f(xn-1),…
在上述構(gòu)造過程中,如果xi(i=1,2,3,…)在定義域中,構(gòu)造數(shù)列的過程繼續(xù)下去;如果xi不在定義域中,則構(gòu)造數(shù)列的過程停止.
①如果可以用上述方法構(gòu)造出一個常數(shù)列{xn},求a的取值范圍;
②如果取定義域中的任一值作為x1,都可以用上述方法構(gòu)造出一個無窮數(shù)列{xn},求a實數(shù)的值.

查看答案和解析>>

科目: 來源: 題型:

精英家教網(wǎng)如圖,在正方體ABCD-A1B1C1D1中,M、N、P分別為棱AB、BC、DD1的中點.
(1)求二面角B1-MN-B的正切值;
(2)證明:PB⊥平面B1MN;
(3)畫出該正方體表面展開圖,使其滿足“有4個正方形連成一個長方形”的條件.

查看答案和解析>>

科目: 來源: 題型:

5、將側(cè)棱相互垂直的三棱錐稱為“直角三棱錐”,三棱錐的側(cè)面和底面分別叫為直角三棱錐的“直角面和斜面”;過三棱錐頂點及斜面任兩邊中點的截面均稱為斜面的“中面”.請仿照直角三角形以下性質(zhì):
(1)斜邊的中線長等于斜邊邊長的一半;
(2)兩條直角邊邊長的平方和等于斜邊邊長的平方;
(3)斜邊與兩條直角邊所成角的余弦平方和等于1.
寫出直角三棱錐相應(yīng)性質(zhì)(至少一條):
(1)斜面的中面面積等于斜面面積的四分之一;(2)三個直角面面積的平方和等于斜面面積的平方(3)斜面與三個直角面所成二面角的余弦平方和等于1.

查看答案和解析>>

科目: 來源: 題型:

在4×□+9×□=60的兩個□中,分別填入兩自然數(shù),使它們的倒數(shù)和最小,應(yīng)分別填上
 
 

查看答案和解析>>

科目: 來源: 題型:

已知函數(shù)f(x)=log2(|x+1|+|x-2|-m).
(1)當(dāng)m=5時,求函數(shù)f(x)的定義域;
(2)若關(guān)于x的不等式f(x)≥1的解集是R,求m的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

已知函數(shù)f(x)=x2ln(ax)(a>0)
(1)若f′(x)≤x2對任意的x>0恒成立,求實數(shù)a的取值范圍;
(2)當(dāng)a=1時,設(shè)函數(shù)g(x)=
f(x)
x
,若x1,x2∈(
1
e
,1),x1+x2<1
,求證x1x2<(x1+x24

查看答案和解析>>

同步練習(xí)冊答案