如圖,將乙圖所示的交變電壓加在甲圖所示的平行板電容器A、B兩極板上,開(kāi)始時(shí)B板的電勢(shì)比A板高,有一位于極板中間的電子,在t=0時(shí)刻由靜止釋放,它只在電場(chǎng)力作用下開(kāi)始運(yùn)動(dòng),設(shè)A、B兩板間距足夠大,則(  )
分析:根據(jù)AB兩極板電場(chǎng)的變化,分析電子所受電場(chǎng)力的變化,判斷其運(yùn)動(dòng)性質(zhì).
解答:解:在0-
T
2
時(shí)間內(nèi),B板的電勢(shì)比A板高,電子受到的電場(chǎng)力向右,向右做勻加速直線運(yùn)動(dòng);在
T
2
-T時(shí)間內(nèi),B板的電勢(shì)比A板低,電子受到的電場(chǎng)力向左,向右做勻減速直線運(yùn)動(dòng),由于兩段過(guò)程所用時(shí)間相等,加速度大小相等,所以t=T時(shí)刻電子速度為零;接著周而復(fù)始,故電子一直向B板運(yùn)動(dòng).
故選B
點(diǎn)評(píng):由于電場(chǎng)方向不斷變化,粒子運(yùn)動(dòng)情況比較復(fù)雜,分析清楚粒子的運(yùn)動(dòng)過(guò)程是正確解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中物理 來(lái)源:浙江省十二校新高考研究聯(lián)盟2012屆高三第一次聯(lián)考物理試題 題型:038

某星球表面,宇航員做了如下實(shí)驗(yàn),如圖甲所示,一豎直平面內(nèi)的軌道由粗糙斜面AD和光滑圓軌道DCE組成,AD與DCE相切于D點(diǎn),C為圓軌道的最低點(diǎn),將一小物塊置于軌道ADC上離地面高為H處由靜止下滑,用力傳感器測(cè)出其經(jīng)過(guò)C點(diǎn)時(shí)對(duì)軌道的壓力N,改變H的大小,可測(cè)出相應(yīng)的N的大小,NH的變化關(guān)系如圖乙折線PQI所示(PQ與QI兩直線相連接于Q點(diǎn)),QI反向延長(zhǎng)交縱軸于F點(diǎn)(0,11 N),求:

(1)軌道的半徑;

(2)物塊與斜面AD間的動(dòng)摩擦因數(shù)μ

(3)若已知小物塊的質(zhì)量為2.5 Kg,星球半徑4000 km則在該星球上發(fā)射一顆人造衛(wèi)星的最小速度.

查看答案和解析>>

科目:高中物理 來(lái)源:2012-2013學(xué)年浙江省寧波市六校合作組織高三上期中考試物理試卷(解析版) 題型:計(jì)算題

如圖甲所示,邊長(zhǎng)為L(zhǎng)的正方形區(qū)域ABCD內(nèi)有豎直向下的勻強(qiáng)電場(chǎng),電場(chǎng)強(qiáng)度為E,與區(qū)域邊界BC相距L處豎直放置足夠大的熒光屏,熒光屏與AB延長(zhǎng)線交于O點(diǎn).現(xiàn)有一質(zhì)量為m,電荷量為+q的粒子從A點(diǎn)沿AB方向以一定的初速度進(jìn)入電場(chǎng),恰好從BC邊的中點(diǎn)P飛出,不計(jì)粒子重力.

(1)求粒子進(jìn)入電場(chǎng)前的初速度的大小.

(2)其他條件不變,增大電場(chǎng)強(qiáng)度使粒子恰好能從CD邊的中點(diǎn)Q飛出,求粒子從Q點(diǎn)飛出時(shí)的動(dòng)能.

(3)現(xiàn)將原來(lái)電場(chǎng)分成AEFD和EBCF相同的兩部分,并將EBCF向右平移一段距離x(x≤L),如圖乙所示.設(shè)粒子打在熒光屏上位置與O點(diǎn)相距y,請(qǐng)求出y與x的關(guān)系.

 

查看答案和解析>>

科目:高中物理 來(lái)源:2011年天津市和平區(qū)耀華中學(xué)高考物理模擬試卷(解析版) 題型:解答題

(1)如圖所示,直線I、Ⅱ分別是電源1與電源2的路端電壓隨輸出電流變化的圖線,曲線Ⅲ是一個(gè)小燈泡的伏安特性曲線,則電源1和電源2的內(nèi)阻之比為_(kāi)_____.若把該小燈泡先后分別與電源1和電源2單獨(dú)連接時(shí),則在這兩種連接狀態(tài)下,小燈泡消耗的功率之比為_(kāi)_____.
(2)某學(xué)生用螺旋測(cè)微器在測(cè)定某一金屬絲的直徑時(shí),測(cè)得的結(jié)果如圖甲所示,則該金屬絲的直徑d=______mm.另一位學(xué)生用游標(biāo)尺上標(biāo)有20等分刻度的游標(biāo)卡尺測(cè)一工件的長(zhǎng)度,測(cè)得的結(jié)果如圖乙所示,則該工件的長(zhǎng)度L=______cm.

(3)如圖所示,某同學(xué)用插針?lè)y(cè)定一半圓形玻璃磚的折射率,在平鋪的白紙上垂直紙面插大頭針P1、P2確定入射光線,
并讓入射光線過(guò)圓心O,在玻璃磚(圖中實(shí)線部分)另一側(cè)垂直紙面插大頭針P3,使P3擋住P1、P2的像,連接OP3.圖中MN為分界面,虛線半圓與玻璃磚對(duì)稱,B、C分別是入射光線、折射光線與圓的交點(diǎn),AB、CD均垂直于法線并分別交法線于A、D點(diǎn).設(shè)AB的長(zhǎng)度為l1,AO的長(zhǎng)度為l2,CD的長(zhǎng)度為l3,DO的長(zhǎng)度為l4,圓的半徑為R,為較方便地表示出玻璃磚的折射率,需用刻度尺測(cè)量的是______(用上述所給物理量的字母表示),則玻璃磚的折射率可表示為_(kāi)_____.
(4)在“用多用表測(cè)電阻”的實(shí)驗(yàn)中,下列說(shuō)法中正確的是______
A.測(cè)電阻時(shí),紅、黑表筆分別錯(cuò)插入負(fù)、正插孔,只要其它方法正確,不影響被測(cè)量電阻的結(jié)果
B.測(cè)量阻值不同的電阻時(shí)都必須重新調(diào)零
C.用×1的歐姆檔測(cè)量時(shí),指針恰好指示在10Ω與20Ω正中間,所測(cè)電阻的阻值一定小于15Ω
D.多用表使用完畢后,應(yīng)將選擇開(kāi)關(guān)置于歐姆表最大檔,以防表頭燒壞.

查看答案和解析>>

科目:高中物理 來(lái)源: 題型:閱讀理解

第二部分  牛頓運(yùn)動(dòng)定律

第一講 牛頓三定律

一、牛頓第一定律

1、定律。慣性的量度

2、觀念意義,突破“初態(tài)困惑”

二、牛頓第二定律

1、定律

2、理解要點(diǎn)

a、矢量性

b、獨(dú)立作用性:ΣF → a ,ΣFx → ax 

c、瞬時(shí)性。合力可突變,故加速度可突變(與之對(duì)比:速度和位移不可突變);牛頓第二定律展示了加速度的決定式(加速度的定義式僅僅展示了加速度的“測(cè)量手段”)。

3、適用條件

a、宏觀、低速

b、慣性系

對(duì)于非慣性系的定律修正——引入慣性力、參與受力分析

三、牛頓第三定律

1、定律

2、理解要點(diǎn)

a、同性質(zhì)(但不同物體)

b、等時(shí)效(同增同減)

c、無(wú)條件(與運(yùn)動(dòng)狀態(tài)、空間選擇無(wú)關(guān))

第二講 牛頓定律的應(yīng)用

一、牛頓第一、第二定律的應(yīng)用

單獨(dú)應(yīng)用牛頓第一定律的物理問(wèn)題比較少,一般是需要用其解決物理問(wèn)題中的某一個(gè)環(huán)節(jié)。

應(yīng)用要點(diǎn):合力為零時(shí),物體靠慣性維持原有運(yùn)動(dòng)狀態(tài);只有物體有加速度時(shí)才需要合力。有質(zhì)量的物體才有慣性。a可以突變而v、s不可突變。

1、如圖1所示,在馬達(dá)的驅(qū)動(dòng)下,皮帶運(yùn)輸機(jī)上方的皮帶以恒定的速度向右運(yùn)動(dòng),F(xiàn)將一工件(大小不計(jì))在皮帶左端A點(diǎn)輕輕放下,則在此后的過(guò)程中(      

A、一段時(shí)間內(nèi),工件將在滑動(dòng)摩擦力作用下,對(duì)地做加速運(yùn)動(dòng)

B、當(dāng)工件的速度等于v時(shí),它與皮帶之間的摩擦力變?yōu)殪o摩擦力

C、當(dāng)工件相對(duì)皮帶靜止時(shí),它位于皮帶上A點(diǎn)右側(cè)的某一點(diǎn)

D、工件在皮帶上有可能不存在與皮帶相對(duì)靜止的狀態(tài)

解說(shuō):B選項(xiàng)需要用到牛頓第一定律,A、C、D選項(xiàng)用到牛頓第二定律。

較難突破的是A選項(xiàng),在為什么不會(huì)“立即跟上皮帶”的問(wèn)題上,建議使用反證法(t → 0 ,a →  ,則ΣFx   ,必然會(huì)出現(xiàn)“供不應(yīng)求”的局面)和比較法(為什么人跳上速度不大的物體可以不發(fā)生相對(duì)滑動(dòng)?因?yàn)槿耸强梢孕巫、重心可以調(diào)節(jié)的特殊“物體”)

此外,本題的D選項(xiàng)還要用到勻變速運(yùn)動(dòng)規(guī)律。用勻變速運(yùn)動(dòng)規(guī)律和牛頓第二定律不難得出

只有當(dāng)L > 時(shí)(其中μ為工件與皮帶之間的動(dòng)摩擦因素),才有相對(duì)靜止的過(guò)程,否則沒(méi)有。

答案:A、D

思考:令L = 10m ,v = 2 m/s ,μ= 0.2 ,g取10 m/s2 ,試求工件到達(dá)皮帶右端的時(shí)間t(過(guò)程略,答案為5.5s)

進(jìn)階練習(xí):在上面“思考”題中,將工件給予一水平向右的初速v0 ,其它條件不變,再求t(學(xué)生分以下三組進(jìn)行)——

① v0 = 1m/s  (答:0.5 + 37/8 = 5.13s)

② v0 = 4m/s  (答:1.0 + 3.5 = 4.5s)

③ v0 = 1m/s  (答:1.55s)

2、質(zhì)量均為m的兩只鉤碼A和B,用輕彈簧和輕繩連接,然后掛在天花板上,如圖2所示。試問(wèn):

① 如果在P處剪斷細(xì)繩,在剪斷瞬時(shí),B的加速度是多少?

② 如果在Q處剪斷彈簧,在剪斷瞬時(shí),B的加速度又是多少?

解說(shuō):第①問(wèn)是常規(guī)處理。由于“彈簧不會(huì)立即發(fā)生形變”,故剪斷瞬間彈簧彈力維持原值,所以此時(shí)B鉤碼的加速度為零(A的加速度則為2g)。

第②問(wèn)需要我們反省這樣一個(gè)問(wèn)題:“彈簧不會(huì)立即發(fā)生形變”的原因是什么?是A、B兩物的慣性,且速度v和位移s不能突變。但在Q點(diǎn)剪斷彈簧時(shí),彈簧卻是沒(méi)有慣性的(沒(méi)有質(zhì)量),遵從理想模型的條件,彈簧應(yīng)在一瞬間恢復(fù)原長(zhǎng)!即彈簧彈力突變?yōu)榱恪?/p>

答案:0 ;g 。

二、牛頓第二定律的應(yīng)用

應(yīng)用要點(diǎn):受力較少時(shí),直接應(yīng)用牛頓第二定律的“矢量性”解題。受力比較多時(shí),結(jié)合正交分解與“獨(dú)立作用性”解題。

在難度方面,“瞬時(shí)性”問(wèn)題相對(duì)較大。

1、滑塊在固定、光滑、傾角為θ的斜面上下滑,試求其加速度。

解說(shuō):受力分析 → 根據(jù)“矢量性”定合力方向  牛頓第二定律應(yīng)用

答案:gsinθ。

思考:如果斜面解除固定,上表仍光滑,傾角仍為θ,要求滑塊與斜面相對(duì)靜止,斜面應(yīng)具備一個(gè)多大的水平加速度?(解題思路完全相同,研究對(duì)象仍為滑塊。但在第二環(huán)節(jié)上應(yīng)注意區(qū)別。答:gtgθ。)

進(jìn)階練習(xí)1:在一向右運(yùn)動(dòng)的車廂中,用細(xì)繩懸掛的小球呈現(xiàn)如圖3所示的穩(wěn)定狀態(tài),試求車廂的加速度。(和“思考”題同理,答:gtgθ。)

進(jìn)階練習(xí)2、如圖4所示,小車在傾角為α的斜面上勻加速運(yùn)動(dòng),車廂頂用細(xì)繩懸掛一小球,發(fā)現(xiàn)懸繩與豎直方向形成一個(gè)穩(wěn)定的夾角β。試求小車的加速度。

解:繼續(xù)貫徹“矢量性”的應(yīng)用,但數(shù)學(xué)處理復(fù)雜了一些(正弦定理解三角形)。

分析小球受力后,根據(jù)“矢量性”我們可以做如圖5所示的平行四邊形,并找到相應(yīng)的夾角。設(shè)張力T與斜面方向的夾角為θ,則

θ=(90°+ α)- β= 90°-(β-α)                 (1)

對(duì)灰色三角形用正弦定理,有

 =                                        (2)

解(1)(2)兩式得:ΣF = 

最后運(yùn)用牛頓第二定律即可求小球加速度(即小車加速度)

答: 。

2、如圖6所示,光滑斜面傾角為θ,在水平地面上加速運(yùn)動(dòng)。斜面上用一條與斜面平行的細(xì)繩系一質(zhì)量為m的小球,當(dāng)斜面加速度為a時(shí)(a<ctgθ),小球能夠保持相對(duì)斜面靜止。試求此時(shí)繩子的張力T 。

解說(shuō):當(dāng)力的個(gè)數(shù)較多,不能直接用平行四邊形尋求合力時(shí),宜用正交分解處理受力,在對(duì)應(yīng)牛頓第二定律的“獨(dú)立作用性”列方程。

正交坐標(biāo)的選擇,視解題方便程度而定。

解法一:先介紹一般的思路。沿加速度a方向建x軸,與a垂直的方向上建y軸,如圖7所示(N為斜面支持力)。于是可得兩方程

ΣFx = ma ,即Tx - Nx = ma

ΣFy = 0 , 即Ty + Ny = mg

代入方位角θ,以上兩式成為

T cosθ-N sinθ = ma                       (1)

T sinθ + Ncosθ = mg                       (2)

這是一個(gè)關(guān)于T和N的方程組,解(1)(2)兩式得:T = mgsinθ + ma cosθ

解法二:下面嘗試一下能否獨(dú)立地解張力T 。將正交分解的坐標(biāo)選擇為:x——斜面方向,y——和斜面垂直的方向。這時(shí),在分解受力時(shí),只分解重力G就行了,但值得注意,加速度a不在任何一個(gè)坐標(biāo)軸上,是需要分解的。矢量分解后,如圖8所示。

根據(jù)獨(dú)立作用性原理,ΣFx = max

即:T - Gx = max

即:T - mg sinθ = m acosθ

顯然,獨(dú)立解T值是成功的。結(jié)果與解法一相同。

答案:mgsinθ + ma cosθ

思考:當(dāng)a>ctgθ時(shí),張力T的結(jié)果會(huì)變化嗎?(從支持力的結(jié)果N = mgcosθ-ma sinθ看小球脫離斜面的條件,求脫離斜面后,θ條件已沒(méi)有意義。答:T = m 。)

學(xué)生活動(dòng):用正交分解法解本節(jié)第2題“進(jìn)階練習(xí)2”

進(jìn)階練習(xí):如圖9所示,自動(dòng)扶梯與地面的夾角為30°,但扶梯的臺(tái)階是水平的。當(dāng)扶梯以a = 4m/s2的加速度向上運(yùn)動(dòng)時(shí),站在扶梯上質(zhì)量為60kg的人相對(duì)扶梯靜止。重力加速度g = 10 m/s2,試求扶梯對(duì)人的靜摩擦力f 。

解:這是一個(gè)展示獨(dú)立作用性原理的經(jīng)典例題,建議學(xué)生選擇兩種坐標(biāo)(一種是沿a方向和垂直a方向,另一種是水平和豎直方向),對(duì)比解題過(guò)程,進(jìn)而充分領(lǐng)會(huì)用牛頓第二定律解題的靈活性。

答:208N 。

3、如圖10所示,甲圖系著小球的是兩根輕繩,乙圖系著小球的是一根輕彈簧和輕繩,方位角θ已知。現(xiàn)將它們的水平繩剪斷,試求:在剪斷瞬間,兩種情形下小球的瞬時(shí)加速度。

解說(shuō):第一步,闡明繩子彈力和彈簧彈力的區(qū)別。

(學(xué)生活動(dòng))思考:用豎直的繩和彈簧懸吊小球,并用豎直向下的力拉住小球靜止,然后同時(shí)釋放,會(huì)有什么現(xiàn)象?原因是什么?

結(jié)論——繩子的彈力可以突變而彈簧的彈力不能突變(胡克定律)。

第二步,在本例中,突破“繩子的拉力如何瞬時(shí)調(diào)節(jié)”這一難點(diǎn)(從即將開(kāi)始的運(yùn)動(dòng)來(lái)反推)。

知識(shí)點(diǎn),牛頓第二定律的瞬時(shí)性。

答案:a = gsinθ ;a = gtgθ 。

應(yīng)用:如圖11所示,吊籃P掛在天花板上,與吊籃質(zhì)量相等的物體Q被固定在吊籃中的輕彈簧托住,當(dāng)懸掛吊籃的細(xì)繩被燒斷瞬間,P、Q的加速度分別是多少?

解:略。

答:2g ;0 。

三、牛頓第二、第三定律的應(yīng)用

要點(diǎn):在動(dòng)力學(xué)問(wèn)題中,如果遇到幾個(gè)研究對(duì)象時(shí),就會(huì)面臨如何處理對(duì)象之間的力和對(duì)象與外界之間的力問(wèn)題,這時(shí)有必要引進(jìn)“系統(tǒng)”、“內(nèi)力”和“外力”等概念,并適時(shí)地運(yùn)用牛頓第三定律。

在方法的選擇方面,則有“隔離法”和“整體法”。前者是根本,后者有局限,也有難度,但常常使解題過(guò)程簡(jiǎn)化,使過(guò)程的物理意義更加明晰。

對(duì)N個(gè)對(duì)象,有N個(gè)隔離方程和一個(gè)(可能的)整體方程,這(N + 1)個(gè)方程中必有一個(gè)是通解方程,如何取舍,視解題方便程度而定。

補(bǔ)充:當(dāng)多個(gè)對(duì)象不具有共同的加速度時(shí),一般來(lái)講,整體法不可用,但也有一種特殊的“整體方程”,可以不受這個(gè)局限(可以介紹推導(dǎo)過(guò)程)——

Σ= m1 + m2 + m3 + … + mn

其中Σ只能是系統(tǒng)外力的矢量和,等式右邊也是矢量相加。

1、如圖12所示,光滑水平面上放著一個(gè)長(zhǎng)為L(zhǎng)的均質(zhì)直棒,現(xiàn)給棒一個(gè)沿棒方向的、大小為F的水平恒力作用,則棒中各部位的張力T隨圖中x的關(guān)系怎樣?

解說(shuō):截取隔離對(duì)象,列整體方程和隔離方程(隔離右段較好)。

答案:N = x 。

思考:如果水平面粗糙,結(jié)論又如何?

解:分兩種情況,(1)能拉動(dòng);(2)不能拉動(dòng)。

第(1)情況的計(jì)算和原題基本相同,只是多了一個(gè)摩擦力的處理,結(jié)論的化簡(jiǎn)也麻煩一些。

第(2)情況可設(shè)棒的總質(zhì)量為M ,和水平面的摩擦因素為μ,而F = μMg ,其中l(wèi)<L ,則x<(L-l)的右段沒(méi)有張力,x>(L-l)的左端才有張力。

答:若棒仍能被拉動(dòng),結(jié)論不變。

若棒不能被拉動(dòng),且F = μMg時(shí)(μ為棒與平面的摩擦因素,l為小于L的某一值,M為棒的總質(zhì)量),當(dāng)x<(L-l),N≡0 ;當(dāng)x>(L-l),N = 〔x -〈L-l〉〕。

應(yīng)用:如圖13所示,在傾角為θ的固定斜面上,疊放著兩個(gè)長(zhǎng)方體滑塊,它們的質(zhì)量分別為m1和m2 ,它們之間的摩擦因素、和斜面的摩擦因素分別為μ1和μ2 ,系統(tǒng)釋放后能夠一起加速下滑,則它們之間的摩擦力大小為:

A、μ1 m1gcosθ ;    B、μ2 m1gcosθ ;

C、μ1 m2gcosθ ;    D、μ1 m2gcosθ ;

解:略。

答:B 。(方向沿斜面向上。)

思考:(1)如果兩滑塊不是下滑,而是以初速度v0一起上沖,以上結(jié)論會(huì)變嗎?(2)如果斜面光滑,兩滑塊之間有沒(méi)有摩擦力?(3)如果將下面的滑塊換成如圖14所示的盒子,上面的滑塊換成小球,它們以初速度v0一起上沖,球應(yīng)對(duì)盒子的哪一側(cè)內(nèi)壁有壓力?

解:略。

答:(1)不會(huì);(2)沒(méi)有;(3)若斜面光滑,對(duì)兩內(nèi)壁均無(wú)壓力,若斜面粗糙,對(duì)斜面上方的內(nèi)壁有壓力。

2、如圖15所示,三個(gè)物體質(zhì)量分別為m1 、m2和m3 ,帶滑輪的物體放在光滑水平面上,滑輪和所有接觸面的摩擦均不計(jì),繩子的質(zhì)量也不計(jì),為使三個(gè)物體無(wú)相對(duì)滑動(dòng),水平推力F應(yīng)為多少?

解說(shuō):

此題對(duì)象雖然有三個(gè),但難度不大。隔離m2 ,豎直方向有一個(gè)平衡方程;隔離m1 ,水平方向有一個(gè)動(dòng)力學(xué)方程;整體有一個(gè)動(dòng)力學(xué)方程。就足以解題了。

答案:F =  。

思考:若將質(zhì)量為m3物體右邊挖成凹形,讓m2可以自由擺動(dòng)(而不與m3相碰),如圖16所示,其它條件不變。是否可以選擇一個(gè)恰當(dāng)?shù)腇′,使三者無(wú)相對(duì)運(yùn)動(dòng)?如果沒(méi)有,說(shuō)明理由;如果有,求出這個(gè)F′的值。

解:此時(shí),m2的隔離方程將較為復(fù)雜。設(shè)繩子張力為T ,m2的受力情況如圖,隔離方程為:

 = m2a

隔離m,仍有:T = m1a

解以上兩式,可得:a = g

最后用整體法解F即可。

答:當(dāng)m1 ≤ m2時(shí),沒(méi)有適應(yīng)題意的F′;當(dāng)m1 > m2時(shí),適應(yīng)題意的F′=  。

3、一根質(zhì)量為M的木棒,上端用細(xì)繩系在天花板上,棒上有一質(zhì)量為m的貓,如圖17所示。現(xiàn)將系木棒的繩子剪斷,同時(shí)貓相對(duì)棒往上爬,但要求貓對(duì)地的高度不變,則棒的加速度將是多少?

解說(shuō):法一,隔離法。需要設(shè)出貓爪抓棒的力f ,然后列貓的平衡方程和棒的動(dòng)力學(xué)方程,解方程組即可。

法二,“新整體法”。

據(jù)Σ= m1 + m2 + m3 + … + mn ,貓和棒的系統(tǒng)外力只有兩者的重力,豎直向下,而貓的加速度a1 = 0 ,所以:

( M + m )g = m·0 + M a1 

解棒的加速度a1十分容易。

答案:g 。

四、特殊的連接體

當(dāng)系統(tǒng)中各個(gè)體的加速度不相等時(shí),經(jīng)典的整體法不可用。如果各個(gè)體的加速度不在一條直線上,“新整體法”也將有一定的困難(矢量求和不易)。此時(shí),我們回到隔離法,且要更加注意找各參量之間的聯(lián)系。

解題思想:抓某個(gè)方向上加速度關(guān)系。方法:“微元法”先看位移關(guān)系,再推加速度關(guān)系。、

1、如圖18所示,一質(zhì)量為M 、傾角為θ的光滑斜面,放置在光滑的水平面上,另一個(gè)質(zhì)量為m的滑塊從斜面頂端釋放,試求斜面的加速度。

解說(shuō):本題涉及兩個(gè)物體,它們的加速度關(guān)系復(fù)雜,但在垂直斜面方向上,大小是相等的。對(duì)兩者列隔離方程時(shí),務(wù)必在這個(gè)方向上進(jìn)行突破。

(學(xué)生活動(dòng))定型判斷斜面的運(yùn)動(dòng)情況、滑塊的運(yùn)動(dòng)情況。

位移矢量示意圖如圖19所示。根據(jù)運(yùn)動(dòng)學(xué)規(guī)律,加速度矢量a1和a2也具有這樣的關(guān)系。

(學(xué)生活動(dòng))這兩個(gè)加速度矢量有什么關(guān)系?

沿斜面方向、垂直斜面方向建x 、y坐標(biāo),可得:

a1y = a2y             ①

且:a1y = a2sinθ     ②

隔離滑塊和斜面,受力圖如圖20所示。

對(duì)滑塊,列y方向隔離方程,有:

mgcosθ- N = ma1y     ③

對(duì)斜面,仍沿合加速度a2方向列方程,有:

Nsinθ= Ma2          ④

解①②③④式即可得a2 。

答案:a2 =  。

(學(xué)生活動(dòng))思考:如何求a1的值?

解:a1y已可以通過(guò)解上面的方程組求出;a1x只要看滑塊的受力圖,列x方向的隔離方程即可,顯然有mgsinθ= ma1x ,得:a1x = gsinθ 。最后據(jù)a1 = 求a1 。

答:a1 =  。

2、如圖21所示,與水平面成θ角的AB棒上有一滑套C ,可以無(wú)摩擦地在棒上滑動(dòng),開(kāi)始時(shí)與棒的A端相距b ,相對(duì)棒靜止。當(dāng)棒保持傾角θ不變地沿水平面勻加速運(yùn)動(dòng),加速度為a(且a>gtgθ)時(shí),求滑套C從棒的A端滑出所經(jīng)歷的時(shí)間。

解說(shuō):這是一個(gè)比較特殊的“連接體問(wèn)題”,尋求運(yùn)動(dòng)學(xué)參量的關(guān)系似乎比動(dòng)力學(xué)分析更加重要。動(dòng)力學(xué)方面,只需要隔離滑套C就行了。

(學(xué)生活動(dòng))思考:為什么題意要求a>gtgθ?(聯(lián)系本講第二節(jié)第1題之“思考題”)

定性繪出符合題意的運(yùn)動(dòng)過(guò)程圖,如圖22所示:S表示棒的位移,S1表示滑套的位移。沿棒與垂直棒建直角坐標(biāo)后,S1x表示S1在x方向上的分量。不難看出:

S1x + b = S cosθ                   ①

設(shè)全程時(shí)間為t ,則有:

S = at2                          ②

S1x = a1xt2                        ③

而隔離滑套,受力圖如圖23所示,顯然:

mgsinθ= ma1x                       ④

解①②③④式即可。

答案:t = 

另解:如果引進(jìn)動(dòng)力學(xué)在非慣性系中的修正式 Σ* = m (注:*為慣性力),此題極簡(jiǎn)單。過(guò)程如下——

以棒為參照,隔離滑套,分析受力,如圖24所示。

注意,滑套相對(duì)棒的加速度a是沿棒向上的,故動(dòng)力學(xué)方程為:

F*cosθ- mgsinθ= ma            (1)

其中F* = ma                      (2)

而且,以棒為參照,滑套的相對(duì)位移S就是b ,即:

b = S = a t2                 (3)

解(1)(2)(3)式就可以了。

第二講 配套例題選講

教材范本:龔霞玲主編《奧林匹克物理思維訓(xùn)練教材》,知識(shí)出版社,2002年8月第一版。

例題選講針對(duì)“教材”第三章的部分例題和習(xí)題。

查看答案和解析>>

同步練習(xí)冊(cè)答案