宇宙中存在一些離其它恒星較遠的、由質量相等的三顆星組成的三星  系統(tǒng),通?珊雎云渌求w對它們的引力作用.已觀測到穩(wěn)定的三星系統(tǒng)存在兩種基本的構成形式:一種是三顆星位于同一直線上,兩顆星圍繞中央星在同一半徑為R的圓軌道上運行;另一種形式是三顆星位于等邊三角形的三個項點上,并沿外接于等邊三角形的圓形軌道運行.設每個星體的質量均為m.第一種形式下,星體運動的線速度為
5Gm
4R
5Gm
4R
,周期為
4πR
R
5Gm
4πR
R
5Gm
.假設兩種形式星體的運動周期相同,第二種形式下星體之間的距離應為
3
12
5
R
3
12
5
R
分析:明確研究對象,對研究對象受力分析,找到做圓周運動所需向心力的來源.
解答:解:(1)在第一種形式下:三顆星位于同一直線上,兩顆星圍繞中央星在同一半徑為R的圓軌道上運行;
其中邊上的一顆星受中央星和另一顆邊上星的萬有引力提供向心力.
G
m2
R2
+G
m2
(2R)2
=m
v2
R

解之得:v=
5Gm
4R

T=
2πR
v
=4πR
R
5Gm
  ①
(2)另一種形式是三顆星位于等邊三角形的三個項點上,并沿外接于等邊三角形的圓形軌道運行,

由萬有引力定律和牛頓第二定律得:2
Gm2
L2
cos30°=m
L
2cos30°
(
T
)2
  ②
有①②解得:L=
3
12
5
R

故答案為:
5Gm
4R
;4πR
R
5Gm
;
3
12
5
R
點評:萬有引力定律和牛頓第二定律是力學的重點,在本題中有些同學找不出什么力提供向心力,關鍵在于進行正確受力分析.
練習冊系列答案
相關習題

科目:高中物理 來源: 題型:

宇宙中存在一些離其它恒星很遠的四顆恒星組成的四星系統(tǒng),通?珊雎云渌求w對它們的引力作用.穩(wěn)定的四星系統(tǒng)存在多種形式,其中一種是四顆質量相等的恒星位于正方形的四個頂點上,沿著外接于正方形的圓形軌道做勻速圓周運動;另一種如圖所示,四顆恒星始終位于同一直線上,均圍繞中點O做勻速圓周運動.已知萬有引力常量為G,求:
(1)已知第一種形式中的每顆恒星質量均為m,正方形邊長為L,求其中一顆恒星受到的合力.
(2)已知第二種形式中的兩外側恒星質量均為m、兩內側恒星質量均為M,四顆恒星始終位于同一直線,且相鄰恒星之間距離相等.求內側恒星質量M與外側恒星質量m的比值
Mm

查看答案和解析>>

科目:高中物理 來源: 題型:

宇宙中存在一些離其它恒星較遠的、由質量相等的三顆星組成的三星系統(tǒng)(假設三顆星的質量均為m,引力常量為G),通?珊雎云渌求w對它們的引力作用.已觀測到穩(wěn)定的三星系統(tǒng)存在兩種基本的構成形式:第一種形式是三顆星位于同一直線上,兩顆星圍繞中央星在同一半徑為R的圓軌道上運行,則兩顆運動星體的運動周期為
R3
5Gm
R3
5Gm
;第二種形式是三顆星位于等邊三角形的三個頂點上,并沿外接于等邊三角形的圓形軌道運行,周期與第一種形式相同,則三顆星之間的距離為
R
3
12
5
R
3
12
5

查看答案和解析>>

科目:高中物理 來源: 題型:

宇宙中存在一些離其它恒星較遠的、由質量相等的三顆星組成的三星系統(tǒng),通?珊雎云渌求w對它們的引力作用.已觀測到穩(wěn)定的三星系統(tǒng)存在兩種基本的構成形式:第一種是三顆星位于同一直線上,兩顆星圍繞中央星在同一半徑為R的圓軌道上運行;第二種形式:三顆星位于邊長為L的等邊三角形的三個頂點上,并沿外接于等邊三角形的圓形軌道運行.設每個星體的質量均為m,引力常量為G.則( 。

查看答案和解析>>

科目:高中物理 來源: 題型:

宇宙中存在一些離其它恒星較遠的、由質量相等的三顆星組成的三星系統(tǒng),通?珊雎云渌求w對它們的引力作用.已觀測到穩(wěn)定的三星系統(tǒng)存在兩種基本的構成形式:一種是三顆星位于同一直線上,兩顆星圍繞中央星在同一半徑為 R 的圓軌道上運行;另一種形式是三顆星位于等邊三角形的三個項點上,并沿外接于等邊三角形的圓形軌道運行.設三顆星質量相等,每個星體的質量均為m.(已知萬有引力常量G)
(1)試求第一種情況下,星體運動的線速度和周期
(2)假設第二種情況下星體之間的距離為R,求星體運動的線速度和周期.

查看答案和解析>>

同步練習冊答案