如圖甲,在平面直角坐標(biāo)系中,Rt△AOB≌ Rt△CDA,且A(-1,0)、B(0,2),拋物線y=ax2+ax-2經(jīng) 過點(diǎn)C。
(1)求拋物線的解析式;
(2)在拋物線(對稱軸的右側(cè))上是否存在兩點(diǎn)P、Q,使四邊形ABPQ是正方形?若存在,求點(diǎn)P、Q的坐標(biāo),若不存在,請說明理由;
(3)如圖乙,E為BC延長線上一動點(diǎn),過A、B、E三點(diǎn)作⊙O′,連接AE,在⊙O′上另有一點(diǎn)F,且AF=AE,AF交BC于點(diǎn)G,連接BF,下列結(jié)論:①BE+BF的值不變;②,其中有且只有一個(gè)成立,請你判斷哪一個(gè)結(jié)論成立,并證明成立的結(jié)論。

甲                                                       乙
解:(1)由Rt△AOB≌Rt△CDA得OD=2+1=3,CD=1,
∴C點(diǎn)坐標(biāo)為(-3,1),
∵拋物線經(jīng)過點(diǎn)C,
∴1=(-3)2a+(-3)a-2,
∴a=,
∴拋物線的解析式為
(2)在拋物線(對稱軸的右側(cè))上存在點(diǎn)P,Q,使四邊形ABPQ是正方形,
如圖甲,以AB為邊在AB的右側(cè)作正方形ABPQ,過P作PE⊥OB于E,QG⊥x軸于G,可證△PBE≌△AQG≌△BAO,
∴PE=AG=BO=2,BE=QG=AO=1,
∴P點(diǎn)坐標(biāo)為(2,1),Q點(diǎn)坐標(biāo)為(1,-1),
由(1)拋物線得,
當(dāng)x=2時(shí),y=1;
當(dāng)x=1時(shí)y=-1,
∴P,Q在拋物線上,
故在拋物線(對稱軸的右側(cè))上存在點(diǎn)P(2,1),Q(1,-1),使四邊形ABPQ是正方形;

(3)結(jié)論②成立,
證明如下:
如圖乙連EF,過F作FM∥BC交AB的延長線于M,則△AMF∽△ABG,

由(1)知△ABC是等腰三角形,
∴∠1=∠2=45°,
∵AF=AE,
∴∠AEF=∠1=45°,
∴∠FAF=90°,
EF是⊙O′的直徑,
∴∠EBF=90°,
∵ FM//BG,
∴∠MFB=∠EBF=90°,∠M=∠2=45°,
∴BF=MF,

      乙
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

23、在數(shù)學(xué)上,為了確定平面上點(diǎn)的位置,我們常用下面的方法:如圖甲,在平面內(nèi)畫兩條互相垂直,并且有公共原點(diǎn)O的數(shù)軸,通常一條畫成水平,叫x軸,另一條畫成鉛垂,叫y軸,這樣,我們就說在平面上建立了一個(gè)平面直角坐標(biāo)系,這是由法國數(shù)學(xué)家和哲學(xué)家笛卡爾創(chuàng)立的,這樣我們就能確定平面上點(diǎn)的位置,例如,要確定點(diǎn)M的位置,只要作MP⊥x軸,MP⊥y軸,設(shè)垂足N,P在各自數(shù)軸上所表示的數(shù)分別為x,y,則x叫做點(diǎn)M的橫坐標(biāo),y叫做點(diǎn)M的縱坐標(biāo),有序數(shù)對(x,y)叫做M點(diǎn)的坐標(biāo),如圖甲,點(diǎn)M的坐標(biāo)記作(2,3),(1)△ABC在平面直角坐標(biāo)系中的位置如圖乙,請把△ABC向右平移3個(gè)單位,在平面直角坐標(biāo)系中畫出平移后的△A′B′C′;
(2)請寫出平移后點(diǎn)A′的坐標(biāo),記作
(2,2)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

在數(shù)學(xué)上,為了確定平面上點(diǎn)的位置,我們常用下面的方法:如圖甲,在平面內(nèi)畫兩條互相垂直,并且有公共原點(diǎn)O的數(shù)軸,通常一條畫成水平,叫x軸,另一條畫成鉛垂,叫y軸,這樣,我們就說在平面上建立了一個(gè)平面直角坐標(biāo)系,這是由法國數(shù)學(xué)家和哲學(xué)家笛卡爾創(chuàng)立的,這樣我們就能確定平面上點(diǎn)的位置,例如,要確定點(diǎn)M的位置,只要作MP⊥x軸,MP⊥y軸,設(shè)垂足N,P在各自數(shù)軸上所表示的數(shù)分別為x,y,則x叫做點(diǎn)M的橫坐標(biāo),y叫做點(diǎn)M的縱坐標(biāo),有序數(shù)對(x,y)叫做M點(diǎn)的坐標(biāo),如圖甲,點(diǎn)M的坐標(biāo)記作(2,3),
(1)△ABC在平面直角坐標(biāo)系中的位置如圖乙,請把△ABC向右平移3個(gè)單位,在平面直角坐標(biāo)系中畫出平移后的△A′B′C′;
(2)請寫出平移后點(diǎn)A′的坐標(biāo),記作______.

查看答案和解析>>

同步練習(xí)冊答案