1. 試證明集合{1,2,...,1989}可以分拆成117個子集合A1,A2,...,A117 (即這些子集合互不相交且并集為整個集合),滿足每個Ai包含17個元素,并且每個Ai中元素之和都相等。
2. 銳角△ABC,內(nèi)角∠A的角平分線交△ABC的外界圓于A_1,類似定義B1,C1點(diǎn)。設(shè)AA1與∠ B,∠C的外交平分線交于A0點(diǎn),類似定義B0,C0點(diǎn)。
求證:△A0B0C0的面積是六邊形AC1BA1CB1的 兩倍也是△ABC面積的至少4倍。
3. 設(shè)n,k是正整數(shù),S是由平面上n個點(diǎn)構(gòu)成的集合并且無三線共點(diǎn),對任何S中的點(diǎn)P至少存在S中的k個點(diǎn)與P等距離。
求證: k<1/2+√2n。
4. 凸四邊形ABCD的邊AB,AD,BC滿足AB=AD+BC,四邊形內(nèi)部有一與直線CD距離為h的點(diǎn)P,并且AP=h+AD,BP=h+BC,
求證:1/√h<=1/√AD+1/√BC。
5. 試證明對每個正整數(shù)n,存在n個連續(xù)的正整數(shù)使得其中無素數(shù)或素數(shù)的冪。
6. 設(shè){x1,x2,...,xm} 是{1,2,...,2n}的一個排列,其中n是一個正整數(shù)。如果|xi-xi+1|=n對至少 {1,2,...,2n-1}中的一個i成立就說這個排列{x1,x2,...,xm}具有性質(zhì)P。 試證明對于任意的n,具有性質(zhì)P的排列都比不具有的多。
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com