2009屆高考數(shù)學(xué)第三輪復(fù)習(xí)精編模擬十

參考公式:

如果事件互斥,那么                                   球的表面積公式

                                   

如果事件相互獨(dú)立,那么                            其中表示球的半徑

                                         球的體積公式

如果事件在一次試驗(yàn)中發(fā)生的概率是,那么         

次獨(dú)立重復(fù)試驗(yàn)中事件恰好發(fā)生次的概率           其中表示球的半徑

第一部分 選擇題(共50分)

一.選擇題:本大題共10小題,每小題5分,共50分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的

1、設(shè)其中i,j為互相垂直的單位向量,又,則實(shí)數(shù)m =(       )。w.w.w.k.s.5.u.c.o.m

(A)  3      (B)   2       (C)-3         (D)-2

試題詳情

2、若則下列結(jié)論中正確的是 (     )w.w.w.k.s.5.u.c.o.m

試題詳情

        (A).;  (B) ;

試題詳情

        (C). ;  (D).

試題詳情

3、方程=的實(shí)根有    (      )

      (A) 1個(gè)  (B) 2個(gè)  (C) 3個(gè)  (D) 無(wú)窮多個(gè)

試題詳情

4、過(guò)點(diǎn)(-1,3)且垂直于直線的直線方程為      (    )

試題詳情

A.;B.;C.; D.

試題詳情

(A)(-,-  (B)(-,0)   (C)(0,  (D)(,

試題詳情

6、已知復(fù)數(shù)z的模為2,則 |z-i| 的最大值為(    )

A.1            B.2           C.4          D.3

試題詳情

7、已知過(guò)球面上A、B、C三點(diǎn)的截面和球心的距離等于球半徑的一半,且AB=BC=CA=2,則球面面積是(   )
(A)π     (B)π       (C)4π         (D)π

試題詳情

8、對(duì)任意θ∈(0,)都有(   )

(A)sin(sinθ)<cosθ<cos(cosθ)      (B) sin(sinθ)>cosθ>cos(cosθ)

(C)sin(cosθ)<cos(sinθ)<cosθ      (D) sin(cosθ)<cosθ<cos(sinθ)

試題詳情

9、若.則下列結(jié)論中正確的是 (   )

試題詳情

                          

試題詳情

10、在坐標(biāo)平面內(nèi),與點(diǎn)A(1,2)距離為1,且與點(diǎn)B(3,1)距離為2的直線共有                                (   )

A、1條               B、2條                       C、3條                D、4條

第二部分 非選擇題(共100分)

試題詳情

二、填空題:本大題共5小題,其中14~15題是選做題,考生只能選做一題,兩題全答的,只計(jì)算前一題得分.每小題5分,滿分20分.

11、集合的真子集的個(gè)數(shù)是

試題詳情

12、如果函數(shù),那么

試題詳情

試題詳情

 13、 橢圓上的一點(diǎn)P到兩焦點(diǎn)的距離的乘積為m,則當(dāng)m取最大值時(shí),點(diǎn)P的坐標(biāo)是_____________________.

試題詳情

14、(坐標(biāo)系與參數(shù)方程選做題) 設(shè)M、N分別是曲線上的動(dòng)點(diǎn),則M、N的最小距離是  

試題詳情

15.(幾何證明選講選做題) 如圖,圓的外接圓,過(guò)點(diǎn)C的切線交的延長(zhǎng)線于點(diǎn),,。則的長(zhǎng)______________,的長(zhǎng)______________.

試題詳情

三.解答題:本大題共6小題,共80分,解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟.

16.(本小題滿分12分)

試題詳情

設(shè)是平面上的兩個(gè)向量,且互相垂直.

   (1)求λ的值;

試題詳情

   (2)若的值.

 

 

 

 

 

 

 

試題詳情

17.(本小題滿分12分)

試題詳情

設(shè)分別是先后拋擲一枚骰子得到的點(diǎn)數(shù),用隨機(jī)變量表示方程實(shí)根的個(gè)數(shù)(重根按一個(gè)計(jì)).

試題詳情

(Ⅰ)求方程有實(shí)根的概率;

試題詳情

(Ⅱ)求的分布列和數(shù)學(xué)期望;

試題詳情

(Ⅲ)求在先后兩次出現(xiàn)的點(diǎn)數(shù)中有5的條件下,方程有實(shí)根的概率.

 

 

 

 

 

 

 

 

 

 

試題詳情

18.(本小題滿分14分)

試題詳情

已知三次函數(shù)時(shí)取極值,且

試題詳情

(Ⅰ) 求函數(shù)的表達(dá)式;

試題詳情

(Ⅱ)求函數(shù)的單調(diào)區(qū)間和極值;

試題詳情

(Ⅲ)若函數(shù)在區(qū)間上的值域?yàn)?sub>,試求、應(yīng)滿足的條件。

 

 

 

 

 

 

 

試題詳情

19.(本小題滿分14分)

試題詳情

如圖,在四棱錐中,底面是正方形,

試題詳情

底面,, 點(diǎn)的中點(diǎn),

試題詳情

,且交于點(diǎn) .

試題詳情

  (I) 求證: 平面;

試題詳情

   (II) 求二面角的余弦值大。

試題詳情

   (III)求證:平面⊥平面.

 

 

 

 

 

 

試題詳情

20.(本小題滿分14分)

試題詳情

雙曲線M的中心在原點(diǎn),并以橢圓的焦點(diǎn)為焦點(diǎn),以拋物線的準(zhǔn)線為右準(zhǔn)線.

(Ⅰ)求雙曲線M的方程;

試題詳情

(Ⅱ)設(shè)直線 與雙曲線M相交于A、B兩點(diǎn),O是原點(diǎn).

試題詳情

① 當(dāng)為何值時(shí),使得?

試題詳情

② 是否存在這樣的實(shí)數(shù),使A、B兩點(diǎn)關(guān)于直線對(duì)稱?若存在,求出的值;若不存在,說(shuō)明理由.

 

 

 

 

 

試題詳情

21.(本小題滿分14分)

把正奇數(shù)數(shù)列中的數(shù)按上小下大、左小右大的原則排成如下三角形數(shù)表:

1

3    5

7    9   11

―    ―    ―    ―

    ―    ―    ―    ―    ―

    設(shè)是位于這個(gè)三角形數(shù)表中從上往下數(shù)第行、從左往右數(shù)第個(gè)數(shù)。

    (I)若,求的值;

(II)已知函數(shù)的反函數(shù)為  ,若記三角形數(shù)表中從上往下數(shù)第n行各數(shù)的和為,求數(shù)列的前n項(xiàng)和。

 

 

 

 

 

 

試題詳情

 

試題詳情

一.選擇題:DDCAB DDDAB

解析:1:,

而i,j為互相垂直的單位向量,故可得。故選

2:∵ ∴0<b<a<1. 由指數(shù)函數(shù)的單調(diào)性可知:,又∵ ∴選(D)

3:作y=與y=的圖象,從圖中可以看出:兩曲線有3個(gè)交點(diǎn),即方程有3個(gè)實(shí)根.選(C)


4:由斜率去篩選,則可排除(C)、(D);再用點(diǎn)(-1,3)去篩選,代入(A)成立,

 ∴應(yīng)選(A).

 

5:取α= ±、±,代入求出sinα、tanα 、cotα 的值,易知α=-適合題設(shè)條件,∴應(yīng)選(B).


      M - i
              2 

6:由復(fù)數(shù)模的幾何意義,畫出右圖,可知當(dāng)圓上的點(diǎn)到M的距離最大時(shí)即為|z-i|最大。所以選D

 

7: ∵球的半徑R不小于△ABC的外接圓半徑r=, 則S=4πR2≥4πr2π>5π,故選(D).

8:當(dāng)θ0時(shí),sin(sinθ)0,cosθ1,cos(cosθ)cos1,故排除A,B.

當(dāng)θ時(shí),cos(sinθ)cos1,cosθ0,故排除C,因此選D.

9:由于的含義是于是若成立,則有成立;同理,若成立,則也成立,以上與指令“供選擇的答案中只有一個(gè)正確”相矛盾,故排除.再考慮,取代入得,顯然,排除.故選.

10:選項(xiàng)暗示我們,只要判斷出直線的條數(shù)就行,無(wú)須具體求出直線方程。以A(1,2)為圓心,1為半徑作圓A,以B(3,1)為圓心,2為半徑作圓B。由平面幾何知識(shí)易知,滿足題意的直線是兩圓的公切線,而兩圓的位置關(guān)系是相交,只有兩條公切線。故選B。

 

二.填空題:11、;12、; 13、;14、-1;15、4,;

解析:

11: ,顯然集合M中有90個(gè)元素,其真子集的個(gè)數(shù)是,應(yīng)填.

12:容易發(fā)現(xiàn),于是   原式=,應(yīng)填

13:記橢圓的二焦點(diǎn)為,有

則知

    顯然當(dāng),即點(diǎn)P位于橢圓的短軸的頂點(diǎn)處時(shí),m取得最大值25.

    故應(yīng)填

14.(略)

15.(略)

三.解答題:

16.解:(1)由題設(shè),得

-----------------3分

因?yàn)?sub>垂直   即

. 又,故,∴的值為2.   ------------------6分

(2)當(dāng)垂直時(shí),

 ------------------8分

,則------------------10分

  ------------------12分

17.解:(I)基本事件總數(shù)為,

若使方程有實(shí)根,則,即。------------------2分

當(dāng)時(shí),;  當(dāng)時(shí),; ------------------3分

 當(dāng)時(shí),;   當(dāng)時(shí),;  ------------------4分

 當(dāng)時(shí),;     當(dāng)時(shí),,      ------------------5分

目標(biāo)事件個(gè)數(shù)為

 因此方程 有實(shí)根的概率為------------------6分

(II)由題意知,,則 ,,

的分布列為

0

1

2

P

的數(shù)學(xué)期望    ------------------10分

(III)記“先后兩次出現(xiàn)的點(diǎn)數(shù)中有5”為事件M,“方程 有實(shí)根” 為事件N,則,   .------------------12分

18.解:(Ⅰ),                            

由題意得,的兩個(gè)根,

解得,.                      ------------------2分

再由可得

.  ------------------4分

(Ⅱ),

當(dāng)時(shí),;當(dāng)時(shí),;------------------5分
當(dāng)時(shí),;當(dāng)時(shí),;------------------6分
當(dāng)時(shí),.∴函數(shù)在區(qū)間上是增函數(shù);------------------7分
在區(qū)間上是減函數(shù);在區(qū)間上是增函數(shù).
函數(shù)的極大值是,極小值是.         ------------------9分

(Ⅲ)函數(shù)的圖象是由的圖象向右平移個(gè)單位,向上平移4個(gè)單位得到,

所以,函數(shù)在區(qū)間上的值域?yàn)?sub>).-------------10分

,∴,即.                           

于是,函數(shù)在區(qū)間上的值域?yàn)?sub>.------------------12分

的單調(diào)性知,,即

綜上所述,、應(yīng)滿足的條件是:,且------------------14分

 

19.(Ⅰ)證明:連結(jié),連結(jié).

是正方形,∴ 的中點(diǎn). ----------1分

的中點(diǎn), ∴的中位線.  ∴.  ----------2分

 又∵平面平面, ----------3分

平面.------------------4分

(II)如圖,以A為坐標(biāo)原點(diǎn),建立空間直角坐標(biāo)系,

故設(shè),則

.  ----------6分

*底面,

是平面的法向量,.----------7分

設(shè)平面的法向量為,

,

 

  即 

 ∴     令,則.  ----------9分

,

∴二面角的余弦值為. ------------------10分

(III),

----------11分

   又.----------12分

.  又平面    ----------13分

 ∴平面⊥平面.     ------------------14分

 

20.解:(Ⅰ)易知,橢圓的半焦距為:,

 又拋物線的準(zhǔn)線為:.    ----------2分

設(shè)雙曲線M的方程為,依題意有,

,又.

∴雙曲線M的方程為. ----------4分

(Ⅱ)設(shè)直線與雙曲線M的交點(diǎn)為兩點(diǎn)

聯(lián)立方程組 消去y得  ,-------5分

兩點(diǎn)的橫坐標(biāo)是上述方程的兩個(gè)不同實(shí)根, ∴

,

從而有,.   ----------7分

,

.

①     若,則有 ,即 .

∴當(dāng)時(shí),使得.    ----------10分

② 若存在實(shí)數(shù),使A、B兩點(diǎn)關(guān)于直線對(duì)稱,則必有 ,

因此,當(dāng)m=0時(shí),不存在滿足條件的k;

當(dāng)時(shí),由

  

∵A、B中點(diǎn)在直線上,

,代入上式得

,又, ∴----------13分

代入并注意到,得 .

∴當(dāng)時(shí),存在實(shí)數(shù),使A、B兩點(diǎn)關(guān)于直線對(duì)稱----------14分

 

21.解(I)三角形數(shù)表中前行共有個(gè)數(shù),

 第行最后一個(gè)數(shù)應(yīng)當(dāng)是所給奇數(shù)列中的第項(xiàng)。

  故第行最后一個(gè)數(shù)是        

  因此,使得的m是不等式的最小正整數(shù)解。----------4分

  由得

  ----------6分

于是,第45行第一個(gè)數(shù)是 

     ----------7分

(II),。 

故        ----------9分

 第n行最后一個(gè)數(shù)是,且有n個(gè)數(shù),若將看成第n行第一個(gè)數(shù),則第n行各數(shù)成公差為-2的等差數(shù)列,故。

  故

   ,

    兩式相減得:

                 

        ----------13分

         ----------14分


同步練習(xí)冊(cè)答案