常德市2007-2008學年度上學期高三水平檢測考試題
數(shù) 學(文科)
命題人: 張國平(市教科所) 黃祖軍(桃源一中) 王麗蘭(市二中)
潘建平(漢壽一中) 沈楊(津市一中)
本試卷分第Ⅰ卷(選擇題)和第Ⅱ卷(非選擇題)兩部分。第Ⅰ卷1至2頁,第Ⅱ卷3至8頁。共150分。考試用時120分鐘。
注意事項:
1.答第Ⅰ卷時,答案填在第Ⅱ卷卷首答題欄內。
2.考試結束后,只交第Ⅱ卷。
第Ⅰ卷(選擇題共50分)
一、選擇題:本大題共10小題,每小題5分,共50分。在每小題給出的四個選項中,只有 一項是符合題目要求的。
1.設集合,,,則
A. B. C. D.
2.函數(shù)的定義域為
A.[1,+∞) B. (,+∞) C. (-∞,1] D. (,1]
3.若,則下列不等式:①;②;③;④中,正確的為
A. ①② B. ①④ C. ②③ D. ③④
4.已知l、m為兩條直線,、是兩個平面,則下列命題中的假命題是
A.若,,則
B.若,,則
C.若,,則
D.若,,,,則
5.已知函數(shù),則的最小正周期和最大值分別是
A., 1 B.2,
6.已知直線與圓相交于A、B兩點,且,則
A. B. C. D.
7.在由1,2,3,4,5這五個數(shù)字組成的沒有重復數(shù)字的三位數(shù)中,各數(shù)位上的數(shù)字之和為偶數(shù)的共有
A.36個 B.24個 C.18個 D.6個
8.在象棋比賽中,參賽的任意兩位選手都比賽一場,其中勝者得2分,負者得0分,平局各得1分. 現(xiàn)有四名學生分別統(tǒng)計全部選手的總得分為131分,132分,133分,134分,但其中只有一名學生的統(tǒng)計結果是正確的,則參賽選手共有
A.11位 B. 12位 C.13位 D.14位
9.已知數(shù)列滿足,如果,該數(shù)列前2008項的和是
A.670 B.
10.已知是關于的方程的兩個實根,那么
A.有最小值0,沒有最大值 B.有最小值,也有最大值
C.有最小值0,也有最大值 D.既沒有最小值也沒有最大值
第Ⅰ卷答題處,將正確答案前的字母填入下表相應的空格內。
得 分
評卷人
題目
1
2
3
4
5
6
7
8
9
10
答案
代號
登分欄(由評卷教師填寫)
題號
一
二
三
總分
16
17
18
19
20
21
得分
第Ⅱ卷(非選擇題共100分)
注意事項:
1. 第Ⅱ卷共6頁,用鋼筆或圓珠筆直接答在試題卷中。
2. 答卷前將密封線內的項目填寫清楚。
得 分
評卷人
二、填空題:本大題共5個小題,每小題5分,共25分,把答案填在題中的橫線上。
11.已知函數(shù)的反函數(shù)為,若,則a =
12.已知,的夾角為450,要使垂直,則
13.已知等差數(shù)列中,=1, =7,則= .
14.橢圓的中心在原點,且經(jīng)過定點,其一個焦點與拋物線的焦點重合,則該橢圓的方程為 .
15. 若函數(shù)滿足,且時,,則函數(shù)的圖象與函數(shù)的圖象的交點的個數(shù)是 .
得 分
評卷人
(16)(本小題12分)
三、解答題:本大題共6小題,共75分.解答應寫文字說明,證明過程或演算步驟.
在△ABC中, 已知角A、B、C的對邊分別為、、,且=2, ,△ABC的面積為.
(1)求證: ; (2)求角C的大小.
得 分
評卷人
(17)(本小題12分)
已知等差數(shù)列的前n項和且=1.
(1)求數(shù)列的通項公式;
(2)求證:.
得 分
評卷人
(18)(本小題12分)
直二面角E-AB-C中,四邊形ABEF是矩形,AB=2,AF=,ΔABC是以A為直角頂點的等腰直角三角形,點P是線段BF上的一個動點.
(1)若PB=PF,求異面直線PC與AB所成的角的余弦值;
(2)若二面角P-AC-B的大小為300,求證:FB⊥平面PAC.
得 分
評卷人
(19) (本小題滿分13分)
已知某公司生產(chǎn)某品牌服裝的年固定成本為10萬元,每生產(chǎn)千件需另投入2.7萬元,設該公司年內共生產(chǎn)該品牌服裝x千件并全部銷售完,每千件的銷售收入為R(x)萬元,且.
(1)寫出年利潤W(萬元)關于年產(chǎn)品x(千件)的函數(shù)解析式;
(2)年產(chǎn)量為多少千件時,該公司在這一品牌服裝的生產(chǎn)中所獲年利潤最大?
(注:年利潤=年銷售收入-年總成本)
得 分
評卷人
(20)(本小題滿分13分)
已知函數(shù)
(1)若函數(shù)
(2)
得 分
評卷人
(21)(本小題13分)
如圖,已知雙曲線,其右準線交x軸于點A, 雙曲線虛軸的下端點為B.過雙曲線的右焦點F作垂直于x軸的直線交雙曲線于點P,若點D滿足,
(1)求雙曲線的離心率;
(2) 若=2,過點B的直線交雙曲線的左右支于M、N兩點,且△OMN的面積=,求的方程.
常德市2007-2008學年度上學期高三水平檢測考試題
一、選擇題:本大題共10小題,每小題5分,共50分。在每小題給出的四個選項中,只有 一項是符合題目要求的。
1.B 2.D 3.B 4.C 5.C 6.A 7.A 8.B 9.D 10.C
二、填空題:本大題共5個小題,每小題4分,共20分,把答案填在題中的橫線上。
11.6 12.2 13.80 14. 15.4
三、解答題:本大題共6小題,共75分。解答應寫文字說明,證明過程或演算步驟.
16.解(1)證明:由得
∴………………………………………………4分
(2)由正弦定理得 ∴……① …………6分
又,=2, ∴ …………② …………8分
解①②得 , …………………………………………10分
∴ . …………………12分
17.解:(1)由得, 即又=1 , ∴=3,……2分
∴………………………4分
(2)設,∴ ………①
∴………②………………………………7分
①-②得
=
=……………………………………………10分
∴, ∴.……………………12分
18.解:(1)分別取BE、AB的中點M、N,
連接PM、MC,PN、NC,則PM=1,MB=,BC=,
∴MC=,而PN=MB=,
NC=,∴PC=,…………………………4分
∴
故所求PC與AB所成角的余弦值為………6分
(2)連結AP,∵二面角E-AB-C是直二面角,且AC⊥AB
∴∠BAP即為所求二面角的平面角,即∠BAP=300……8分
在RtΔBAF中,tan∠ABF=,∴∠ABF=600,
故BF⊥AP, …………………………………………………………10分
又AC⊥面BF,∴BF⊥AC,故BF⊥平面PAC…………………………12分
18.另解:分別以AB、AC、AF為x、y、z軸建立直角坐標系,
則,
∴
而, ∴
故異面直線PC與AB所成的角的余弦值為。
(2)分別設平面ABC和平面PAC的法向量分別為,P點坐標設為,則而,則由
得
且 ∴,
再由得
∴,,
而
∴,即
BF⊥AP,BF⊥AC∴BF⊥平面PAC
19.解:(1)當0<x≤10時,……2分
當x >10時,…………4分
…………………………………5分
(2)①當0<x≤10時,由
當
∴當x=9時,W取最大值,且……9分
②當x>10時,W=98
當且僅當…………………………12分
綜合①、②知x=9時,W取最大值.
所以當年產(chǎn)量為9千件時,該公司在這一品牌服裝生產(chǎn)中獲利最大.……13分
20.解: (1)………………………2分
即 ………4分
∴是 (也可寫成閉區(qū)間)…………6分
(2) ……………………8分
不等式組所確定的平面區(qū)域如圖所示。…………………………………10分
設
……………………………………13分
21.(1)B(0,-b)
,即D為線段FP的中點.,
∴……………………………2分
,即A、B、D共線.
而
∴,得,………………………4分
∴………………………………5分
(2)∵=2,而,∴,
故雙曲線的方程為………①………………………………6分
∴B、的坐標為(0,-1)
設的方程為…………②
②代入①得
由題意得: 得:…………9分
設M、N的坐標分別為(x1,y1) 、(x2,y2)
則
而
………11分
整理得, 解得: 或(舍去)
∴所求的方程為………………………………13分
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com