科目:數(shù)學(文史類)
(試題卷)
注意事項:
1.答題前,考生務必將自己的姓名、準考證號寫在答題卡和該試題卷的封面上,并認真核對條形碼上的姓名、準考證號和科目。
2.考生作答時,選擇題和非選擇題均須作在答題卡上,在草稿紙和本試卷上答題無效。考生在答題卡上按如下要求答題:
(1)選擇題部分請用2B鉛筆把應題目的答案標號所在方框涂黑,修改時用橡皮擦干凈,不留痕跡。
(2)非選擇題部分(包括填空題和解答題)請按題號用0.5毫米黑色墨水簽字筆書寫,否則作答無效。
(3)保持字體工整、筆跡清晰、卡面清潔、不折疊。
3.考試結束后,將本試題卷和答題卡一并交回。
4. 本試卷共5頁。如缺頁,考生須聲明,否則后果自負。
姓 名
準考證號
絕密★啟用前
數(shù) 學(文史類)
本試題卷他選擇題和非選擇題(包括填空題和解答題)兩部分. 選擇題部分1至2頁. 非選擇題部分3至5頁. 時量120分鐘. 滿分150分.
參考公式:
如果事件、互斥,那么
如果事件、相互獨立,那么
如果事件在一次試驗中發(fā)生的概率是,那么次獨立重復試驗中恰好發(fā)生次的概率是
球的體積公式 ,球的表面積公式,其中表示球的半徑
一.選擇題:本大題共10小題,每小題5分,共50分. 在每小題給出的四個選項中,只有一項是符合題目要求的.
1.函數(shù)的定義域是
A.(0,1] B. (0,+∞) C. (1,+∞) D. [1,+∞)
2.已知向量若時,∥;時,,則
A. B.
C. D.
3. 若的展開式中的系數(shù)是80,則實數(shù)a的值是
A.-2 B. C. D. 2
4.過半徑為2的球O表面上一點A作球O的截面,若OA與該截面所成的角是60°則該截面的面積是
A.π B. 2π C. 3π D.
5.“a=1”是“函數(shù)在區(qū)間[1,+∞)上為增函數(shù)”的
A.充分不必要條件 B. 必要不充分條件
C. 充要條件 D. 既不充分也不必要條件
6.在數(shù)字1,2,3與符號+,-五個元素的所有全排列中,任意兩個數(shù)字都不相鄰的全排列個數(shù)是
A.6 B. 12 C. 18 D. 24
7.圓上的點到直線的最大距離與最小距離的差是
A.36 B. 18 C. D.
8.設點P是函數(shù)的圖象C的一個對稱中心,若點P到圖象C的對稱軸上的距離的最小值,則的最小正周期是
A.2π B. π C. D.
9.過雙曲線M:的左頂點A作斜率為1的直線l,若l與雙曲線M的兩條漸近線分別相交于點B、C,且,則雙曲線M的離心率是
A. B. C. D.
A. B.
C. D.
二.填空題:本大題共5小題,每小題4分,共20分,把答案填在答題上部 對應題號的橫上.
11. 若數(shù)列滿足:,2,3….則 .
12. 某高校有甲、乙兩個數(shù)學建模興趣班. 其中甲班有40人,乙班50人. 現(xiàn)分析兩個班的一次考試成績,算得甲班的平均成績是90分,乙班的平均成績是81分,則該校數(shù)學建模興趣班的平均成績是 分.
13. 已知則的最小值是 .
14. 過三棱柱 ABC-A1B1C1 的任意兩條棱的中點作直線,其中與平面ABB1A1平行的直線共有 條.
15. 若是偶函數(shù),則a= .
三.解答題:本大題共6小題,共80分. 解答應寫出文字說明,證明過程或演算步驟.
16.(本小題滿分12分)
已知求θ的值.
17.(本小題滿分12分)
某安全生產(chǎn)監(jiān)督部門對5家小型煤礦進行安全檢查(簡稱安檢). 若安檢不合格,則必須整改. 若整改后經(jīng)復查仍不合格,則強制關閉. 設每家煤礦安檢是否合格是相互獨立的,且每家煤礦整改前安檢合格的概率是0.5,整改后安檢合格的概率是0.8,計算(結果精確到0.01):
(Ⅰ)恰好有兩家煤礦必須整改的概率;
(Ⅱ)某煤礦不被關閉的概率;
(Ⅲ)至少關閉一家煤礦的概率.
18.(本小題滿分14分)
Q-ABCD的高都是2,AB=4.
(Ⅰ)證明PQ⊥平面ABCD;
(Ⅱ)求異面直線AQ與PB所成的角;
(Ⅲ)求點P到平面QAD的距離.
19.(本小題滿分14分)
已知函數(shù).
(I)討論函數(shù)的單調性;
(Ⅱ)若曲線上兩點A、B處的切線都與y軸垂直,且線段AB與x軸有公共點,求實數(shù)a的取值范圍.
20.(本小題滿分14分)
在m(m≥2)個不同數(shù)的排列P1P2…Pn中,若1≤i<j≤m時Pi>Pj(即前面某數(shù)大于后面某數(shù)),則稱Pi與Pj構成一個逆序. 一個排列的全部逆序的總數(shù)稱為該排列的逆序數(shù). 記排列的逆序數(shù)為an,如排列21的逆序數(shù),排列321的逆序數(shù).
(Ⅰ)求a4、a5,并寫出an的表達式;
(Ⅱ)令,證明,n=1,2,….
21.(本小題滿分14分)
已知橢圓C1:,拋物線C2:,且C1、C2的公共弦AB過橢圓C1的右焦點.
(Ⅰ)當軸時,求p、m的值,并判斷拋物線C2的焦點是否在直線AB上;
。á颍┤羟覓佄锞C2的焦點在直線AB上,求m的值及直線AB的方程.
1-10:DCDAABCBCDC
11., 12. 85, 13. 5 ,14. 6 ,15. -3 .
1.函數(shù)的定義域是,解得x≥1,選D.
2.向量若時,∥,∴ ;時,,,選C.
3.的展開式中的系數(shù)=x3, 則實數(shù)的值是2,選D
4.過半徑為2的球O表面上一點A作球O的截面,若OA與該截面所成的角是60°,則截面圓的半徑是R=1,該截面的面積是π,選A.
5.若“”,則函數(shù)=在區(qū)間上為增函數(shù);而若在區(qū)間上為增函數(shù),則0≤a≤1,所以“”是“函數(shù)在區(qū)間上為增函數(shù)”的充分不必要條件,選A.
6.在數(shù)字1,2,3與符號“+”,“-”五個元素的所有全排列中,先排列1,2,3,有種排法,再將“+”,“-”兩個符號插入,有種方法,共有12種方法,選B.
7.圓的圓心為(2,2),半徑為3,圓心到到直線的距離為>3,圓上的點到直線的最大距離與最小距離的差是2R =6,選C.
8.設點P是函數(shù)的圖象C的一個對稱中心,若點P到圖象C的對稱軸上的距離的最小值,∴ 最小正周期為π,選B.
9.過雙曲線的左頂點(1,0)作斜率為1的直線:y=x-1, 若與雙曲線的兩條漸近線分別相交于點, 聯(lián)立方程組代入消元得,∴ ,x1+x2=2x1x2,又,則B為AC中點,2x1=1+x2,代入解得,∴ b2=9,雙曲線的離心率e=,選D.
10.如圖,OM∥AB,點P由射線OM、線段OB及AB的延長線圍成的陰影區(qū)域內(不含邊界).且,
由圖知,x<0,當x=-時,即=-,P點在線段DE上,=,=,而<<,∴ 選C.
二.填空題:
11.; 12. 85; 13. 5 ; 14. 6 ; 15. -3 .
11.數(shù)列滿足:,2,3…,該數(shù)列為公比為2的等比數(shù)列,∴ .
12.某高校有甲、乙兩個數(shù)學建模興趣班. 其中甲班有40人,乙班50人. 現(xiàn)分析兩個班的一次考試成績,算得甲班的平均成績是90分,乙班的平均成績是81分,則該校數(shù)學建模興趣班的平均成績是分.
13.已知,如圖畫出可行域,得交點A(1,2),B(3,4),則的最小值是5.
14.過三棱柱 ABC-A1B1C1 的任意兩條棱的中點作直線,其中與平面ABB1A1平行的直線共有6條。
15.是偶函數(shù),取a=-3,可得為偶函數(shù)。
16. 解 由已知條件得.
即.
解得.
由0<θ<π知,從而.
17. 解。á瘢┟考颐旱V必須整改的概率是1-0.5,且每家煤礦是否整改是相互獨立的. 所以恰好有兩家煤礦必須整改的概率是.
(Ⅱ)解法一 某煤礦被關閉,即該煤礦第一次安檢不合格,整改后經(jīng)復查仍不合格,所以該煤礦被關閉的概率是,從而煤礦不被關閉的概率是0.90.
解法二 某煤礦不被關閉包括兩種情況:(i)該煤礦第一次安檢合格;(ii)該煤礦第一次安檢不合格,但整改后合格.
所以該煤礦不被關閉的概率是.
(Ⅲ)由題設(Ⅱ)可知,每家煤礦不被關閉的概率是0.9,且每家煤礦是否被關閉是相互獨立的,所以到少關閉一家煤礦的概率是.
18. 解法一 (Ⅰ)連結AC、BD,設.
由P-ABCD與Q-ABCD都是正四棱錐,所以PO⊥平面ABCD,QO⊥平面ABCD.
從而P、O、Q三點在一條直線上,所以PQ⊥平面ABCD.
(Ⅱ)由題設知,ABCD是正方形,所以AC⊥BD.
所以
于是.
從而異面直線AQ與PB所成的角是.
(Ⅲ)由(Ⅱ),點D的坐標是(0,-,0),,
,設是平面QAD的一個法向量,由
得.
取x=1,得.
所以點P到平面QAD的距離.
解法二 (Ⅰ)取AD的中點,連結PM,QM.
因為P-ABCD與Q-ABCD都是正四棱錐,
所以AD⊥PM,AD⊥QM. 從而AD⊥平面PQM.
又平面PQM,所以PQ⊥AD.
同理PQ⊥AB,所以PQ⊥平面ABCD.
因為OA=OC,OP=OQ,所以PAQC為平行四邊形,AQ∥PC.
從而∠BPC(或其補角)是異面直線AQ與PB所成的角.
因為,
所以.
從而異面直線AQ與PB所成的角是.
(Ⅲ)連結OM,則.
所以∠PMQ=90°,即PM⊥MQ.
由(Ⅰ)知AD⊥PM,所以PM⊥平面QAD. 從而PM的長是點P到平面QAD的距離.
在直角△PMO中,.
即點P到平面QAD的距離是.
19. 解。á瘢┯深}設知.
令.
當(i)a>0時,
若,則,所以在區(qū)間上是增函數(shù);
若,則,所以在區(qū)間上是減函數(shù);
若,則,所以在區(qū)間上是增函數(shù);
(i i)當a<0時,
若,則,所以在區(qū)間上是減函數(shù);
若,則,所以在區(qū)間上是減函數(shù);
若,則,所以在區(qū)間上是增函數(shù);
若,則,所以在區(qū)間上是減函數(shù).
(Ⅱ)由(Ⅰ)的討論及題設知,曲線上的兩點A、B的縱坐標為函數(shù)的極值,且函數(shù)在處分別是取得極值,.
因為線段AB與x軸有公共點,所以.
即.所以.
故.
解得 -1≤a<0或3≤a≤4.
即所求實數(shù)a的取值范圍是[-1,0)∪[3,4].
20. 解。á瘢┯梢阎茫
.
(Ⅱ)因為,
所以.
又因為,
所以
=.
綜上,.
21. 解 (Ⅰ)當AB⊥x軸時,點A、B關于x軸對稱,所以m=0,直線AB的方程為
x=1,從而點A的坐標為(1,)或(1,-).
因為點A在拋物線上,所以,即.
此時C2的焦點坐標為(,0),該焦點不在直線AB上.
(Ⅱ)解法一 當C2的焦點在AB時,由(Ⅰ)知直線AB的斜率存在,設直線AB的方程為.
由消去y得. ……①
設A、B的坐標分別為(x1,y1), (x2,y2),
則x1,x2是方程①的兩根,x1+x2=.
所以,且
.
從而.
所以,即.
解得.
因為C2的焦點在直線上,所以.
即.
當時,直線AB的方程為;
當時,直線AB的方程為.
解法二 當C2的焦點在AB時,由(Ⅰ)知直線AB的斜率存在,設直線AB的方程
為.
由消去y得. ……①
因為C2的焦點在直線上,
所以,即.代入①有.
即. ……②
設A、B的坐標分別為(x1,y1), (x2,y2),
則x1,x2是方程②的兩根,x1+x2=.
由消去y得. ……③
由于x1,x2也是方程③的兩根,所以x1+x2=.
從而=. 解得.
因為C2的焦點在直線上,所以.
即.
當時,直線AB的方程為;
當時,直線AB的方程為.
解法三 設A、B的坐標分別為(x1,y1), (x2,y2),
因為AB既過C1的右焦點,又是過C2的焦點,
所以.
即. ……①
由(Ⅰ)知,于是直線AB的斜率, ……②
且直線AB的方程是,
所以. ……③
又因為,所以. ……④
將①、②、③代入④得,即.
當時,直線AB的方程為;
當時,直線AB的方程為.
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com