設(shè)橢圓的焦點分別為.右準(zhǔn)線交軸于點A.且. (Ⅰ)試求橢圓的方程, (Ⅱ)過.分別作互相垂直的兩直線與橢圓分別交于D.E. M.N四點.試求四邊形DMEN面積的最大值和最小值. 查看更多

 

題目列表(包括答案和解析)

(本小題滿分14分) 

設(shè)橢圓的左、右焦點分別為,上頂點為,在軸負(fù)半軸上

有一點,滿足,且.

   (1)求橢圓的離心率;

   (2)若過三點的圓恰好與直線相切,求橢圓的方程;

   (3)在(2)的條件下,過右焦點作斜率為的直線與橢圓交于兩點,在軸上是否存在點使得以為鄰邊的平行四邊形是菱形,如果存在,求出的取值范圍,如果不存在,說明理由。  

 

 

查看答案和解析>>

(本小題滿分14分)

設(shè)橢圓方程為拋物線方程為如圖4所示,過點軸的平行線,與拋物線在第一象限的交點為G.已知拋物線在點G的切線經(jīng)過橢圓的右焦點

       (1)求滿足條件的橢圓方程和拋物線方程;

       (2)設(shè)A,B分別是橢圓長軸的左、右端點,試探究在拋物線上是否存在點P,使得為直角三角形?若存在,請指出共有幾個這樣的點?并說明理由(不必具體求出這些點的坐標(biāo)) 。

查看答案和解析>>

(本小題滿分14分)設(shè)橢圓與拋物線的焦點均在軸上,的中心和的頂點均為原點,從每條曲線上至少取兩個點,將其坐標(biāo)記錄于下表中:

 

1)求,的標(biāo)準(zhǔn)方程, 并分別求出它們的離心率;

2)設(shè)直線與橢圓交于不同的兩點,且(其中坐標(biāo)原點),請問是否存在這樣的直線過拋物線的焦點若存在,求出直線的方程;若不存在,請說明理由.

 

查看答案和解析>>

(本小題滿分14分)

設(shè)橢圓方程為拋物線方程為如圖4所示,過點軸的平行線,與拋物線在第一象限的交點為G.已知拋物線在點G的切線經(jīng)過橢圓的右焦點

       (1)求滿足條件的橢圓方程和拋物線方程;

       (2)設(shè)A,B分別是橢圓長軸的左、右端點,試探究在拋物線上是否存在點P,使得為直角三角形?若存在,請指出共有幾個這樣的點?并說明理由(不必具體求出這些點的坐標(biāo)) 。

 

查看答案和解析>>

(本小題滿分14分)設(shè)橢圓與拋物線的焦點均在軸上,的中心和的頂點均為原點,從每條曲線上至少取兩個點,將其坐標(biāo)記錄于下表中:













 
1)求,的標(biāo)準(zhǔn)方程, 并分別求出它們的離心率;
2)設(shè)直線與橢圓交于不同的兩點,且(其中坐標(biāo)原點),請問是否存在這樣的直線過拋物線的焦點若存在,求出直線的方程;若不存在,請說明理由.

查看答案和解析>>


同步練習(xí)冊答案