18.已知f(x)=(x-1). g(x)=4(x-1),數(shù)列﹛an﹜中.對 任意正整數(shù)n.等 式(an+1-an)g(an)+f(an)=0都成立.且a1=2 當n≥2時 an≠1,設(shè)bn=an-1 (Ⅰ)求證數(shù)列﹛bn﹜是等比數(shù)列, (Ⅱ)設(shè)Sn為數(shù)列﹛nbn﹜前n項和.Tn=Sn+ 求Tn的取值范圍. 查看更多

 

題目列表(包括答案和解析)

已知函數(shù) f (x) = x3 -(l-3)x2 -(l +3)x + l -1(l > 0)在區(qū)間[n, m]上為減函數(shù),記m的最大值為m0,n的最小值為n0,且滿足m0-n0 = 4.

(1)求m0,n0的值以及函數(shù)f (x)的解析式;

(2)已知等差數(shù)列{xn}的首項.又過點A(0, f (0)),B(1, f (1))的直線方程為y=g(x).試問:在數(shù)列{xn}中,哪些項滿足f (xn)>g(xn)?

(3)若對任意x1,x2∈ [a, m0](x1x2),都有成立,求a的最小值.

查看答案和解析>>

已知函數(shù)f(x)=(x-1)2g(x)=4(x-1),數(shù)列{an}是各項均不為0的等差數(shù)列,其前n項和為Sn,點(an+1,S2n-1)在函數(shù)f(x)的圖象上;數(shù)列{bn}滿足b1=2,bn≠1,且(bnbn+1g(bn)=f(bn)(n∈N).
(1)求an并證明數(shù)列{bn-1}是等比數(shù)列;
(2)若數(shù)列{cn}滿足cn,證明:c1c2c3+…+cn<3.

查看答案和解析>>

已知函數(shù)f(x)=(x-1)2,g(x)=4(x-1),數(shù)列{an}是各項均不為0的等差數(shù)列,其前n項和為Sn,點(an+1,S2n-1)在函數(shù)f(x)的圖象上;數(shù)列{bn}滿足b1=2,bn≠1,且(bnbn+1g(bn)=f(bn)(n∈N).
(1)求an并證明數(shù)列{bn-1}是等比數(shù)列;
(2)若數(shù)列{cn}滿足cn,證明:c1c2c3+…+cn<3.

查看答案和解析>>

已知函數(shù)f(x)=(x-1)2,g(x)=4(x-1),數(shù)列{an}是各項均不為0的等差數(shù)列,其前n項和為Sn,點(an+1,S2n-1)在函數(shù)f(x)的圖象上;數(shù)列{bn}滿足b1=2,bn≠1,且(bnbn+1g(bn)=f(bn)(n∈N).
(1)求an并證明數(shù)列{bn-1}是等比數(shù)列;
(2)若數(shù)列{cn}滿足cn,證明:c1c2c3+…+cn<3.

查看答案和解析>>

已知函數(shù)f(x)(x1)2g(x)4(x1),數(shù)列{an}是各項均不為0的等差數(shù)列,其前n項和為Sn,點(an1,S2n1)在函數(shù)f(x)的圖象上;數(shù)列{bn}滿足b12,bn≠1,且(bnbn1g(bn)f(bn)(nN)

(1)an并證明數(shù)列{bn1}是等比數(shù)列;

(2)若數(shù)列{cn}滿足cn,證明:c1c2c3cn<3.

 

查看答案和解析>>


同步練習冊答案