已知雙曲線和橢圓:有公共的焦點(diǎn).它們的離心率分別是和.且.求雙曲線的方程. 查看更多

 

題目列表(包括答案和解析)

已知雙曲線C1:x2-y2=m(m>0)與橢圓C2
x2
a2
+
y2
b2
=1
有公共焦點(diǎn)F1F2,點(diǎn)N(
2
,1)
是它們的一個(gè)公共點(diǎn).
(1)求C1,C2的方程;
(2)過點(diǎn)F2且互相垂直的直線l1,l2與圓M:x2+(y+1)2=4分別相交于點(diǎn)A,B和C,D,求|AB|+|CD|的最大值,并求此時(shí)直線l1的方程.

查看答案和解析>>

已知雙曲線C1:x2-y2=m(m>0)與橢圓有公共焦點(diǎn)F1F2,點(diǎn)是它們的一個(gè)公共點(diǎn).
(1)求C1,C2的方程;
(2)過點(diǎn)F2且互相垂直的直線l1,l2與圓M:x2+(y+1)2=4分別相交于點(diǎn)A,B和C,D,求|AB|+|CD|的最大值,并求此時(shí)直線l1的方程.

查看答案和解析>>

已知橢圓與雙曲線有公共焦點(diǎn),且離心率為.A,B分別是橢圓C的左頂點(diǎn)和右頂點(diǎn).點(diǎn)S是橢圓C上位于x軸上方的動(dòng)點(diǎn).直線AS,BS分別與直線l分別交于M,N兩點(diǎn).

(1)求橢圓C的方程;

(2)延長(zhǎng)MB交橢圓C于點(diǎn)P,若PS⊥AM,試證明MS2=MB·MP.

(3)當(dāng)線段MN的長(zhǎng)度最小時(shí),在橢圓C上是否存在點(diǎn)T,使得△TSB的面積為?若存在確定點(diǎn)T的個(gè)數(shù),若不存在,說明理由.

查看答案和解析>>

已知雙曲線C1和橢圓C2數(shù)學(xué)公式有公共的焦點(diǎn),它們的離心率分別是e1和e2,且數(shù)學(xué)公式,求雙曲線C1的方程.

查看答案和解析>>

已知雙曲線C1和橢圓C2有公共的焦點(diǎn),它們的離心率分別是e1和e2,且,求雙曲線C1的方程.

查看答案和解析>>


同步練習(xí)冊(cè)答案