已知曲線C1:y=mx-1,C2:y=1 |x|≤1,要使C1與C2總有交點.則m的取值范圍是 A.[-1.1] B. C.[1.+∞ D. 查看更多

 

題目列表(包括答案和解析)

選修4-4:極坐標(biāo)系與參數(shù)方程
已知曲線C1
x=-4+cost
y=3+sint
(t為參數(shù)),C2
x=8cosθ
y=3sinθ
(θ為參數(shù)).
(1)化C1,C2的方程為普通方程;
(2)若C1上的點P對應(yīng)的參數(shù)為t=
π
2
,Q為C2上的動點,求PQ中點M到直線C3
x=3+2t
y=-2+t
(t為參數(shù))距離的最小值.

查看答案和解析>>

(2013•閘北區(qū)二模)在平面直角坐標(biāo)系xOy中,已知曲線C1為到定點F(
3
2
,
1
2
)
的距離與到定直線l1
3
x+y+2=0
的距離相等的動點P的軌跡,曲線C2是由曲線C1繞坐標(biāo)原點O按順時針方向旋轉(zhuǎn)30°形成的.
(1)求曲線C1與坐標(biāo)軸的交點坐標(biāo),以及曲線C2的方程;
(2)過定點M0(m,0)(m>2)的直線l2交曲線C2于A、B兩點,已知曲線C2上存在不同的兩點C、D關(guān)于直線l2對稱.問:弦長|CD|是否存在最大值?若存在,求其最大值;若不存在,請說明理由.

查看答案和解析>>

已知曲線C1:y=ax2,(a>0)上一點A(1,a)到原點的距離是
26
,過原點O作OM、ON交C1于M、N兩點,直線MN交y軸于點Q(0,y0),
(1)求曲線C1的方程;(2)當(dāng)∠MON為銳角時,求y0的取值范圍.

查看答案和解析>>

已知曲線C1:y=
1
3
x3-3x+
4
3
,曲線C2:y=x2-
9
2
x+m
,若當(dāng)x∈[-2,2]時,曲線C1在曲線C2的下方,則實數(shù)m的取值范圍是
 

查看答案和解析>>

(1)(矩陣與變換)已知二階矩陣M=
0-1
23

(Ⅰ)求矩陣M的逆矩陣;
(Ⅱ)設(shè)向量
α
=
-1
3
,求M100
α

(2)(坐標(biāo)系與參數(shù)方程)
已知曲線C1的參數(shù)方程為
x=1+2cosθ
y=-1+2sinθ
(θ是參數(shù)),曲線C2的極坐標(biāo)方程為θ=
π
4
(ρ∈R).
(Ⅰ)求曲線C1的普通方程和曲線C2的平面直角坐標(biāo)方程;
(Ⅱ)設(shè)曲線C1和曲線C2相交于A,B兩點,求弦長|AB|.

查看答案和解析>>


同步練習(xí)冊答案