題目列表(包括答案和解析)
對于三次函數(shù)f(x)=ax3+bx2+cx+d(a≠0)
定義:(1)設(shè)(x)是函數(shù)y=f(x)的導(dǎo)數(shù)y=(x)的導(dǎo)數(shù),若方程(x)=0有實數(shù)解x0,則稱點為函數(shù)y=f(x)的“拐點”;
定理:(2)設(shè)x0為常數(shù),若定義在R上的函數(shù)y=f(x)對于定義域內(nèi)的一切實數(shù)x,都有f(x0+x)+f(x0-x)=2f(x0)成立,則函數(shù)y=f(x)的圖象關(guān)于點對稱.
己知f(x)=x3-3x2+2x+2
求:(Ⅰ)求函數(shù)f(x)的“拐點”A的坐標
(Ⅱ)檢驗函數(shù)f(x)的圖象是否關(guān)于“拐點”A對稱,對于任意的三次函數(shù)寫出一個有關(guān)“拐點”的結(jié)論(不必證明)
(Ⅲ)寫出一個三次函數(shù)G(x),使得它的“拐點”是(-1,3)(不要過程)
若x1、x2是關(guān)于一元二次方程ax2+bx+c(a≠0)的兩個根,則方程的兩個根x1、x2和系數(shù)a、b、c有如下關(guān)系:x1+x2=-,x1•x2=.把它稱為一元二次方程根與系數(shù)關(guān)系定理.如果設(shè)二次函數(shù)y=ax2+bx+c(a≠0)的圖象與x軸的兩個交點為A(x1,0),B(x2,0).利用根與系數(shù)關(guān)系定理可以得到A、B連個交點間的距離為:
AB=|x1-x2|====.
參考以上定理和結(jié)論,解答下列問題:
設(shè)二次函數(shù)y=ax2+bx+c(a>0)的圖象與x軸的兩個交點A(x1,0)、B(x2,0),拋物線的頂點為C,顯然△ABC為等腰三角形.
(1)當△ABC為直角三角形時,求b2-4ac的值;
(2)當△ABC為等邊三角形時,求b2-4ac的值.
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com