題目列表(包括答案和解析)
已知曲線C:(m∈R)
(1) 若曲線C是焦點在x軸點上的橢圓,求m的取值范圍;
(2) 設(shè)m=4,曲線c與y軸的交點為A,B(點A位于點B的上方),直線y=kx+4與曲線c交于不同的兩點M、N,直線y=1與直線BM交于點G.求證:A,G,N三點共線。
【解析】(1)曲線C是焦點在x軸上的橢圓,當(dāng)且僅當(dāng)解得,所以m的取值范圍是
(2)當(dāng)m=4時,曲線C的方程為,點A,B的坐標(biāo)分別為,
由,得
因為直線與曲線C交于不同的兩點,所以
即
設(shè)點M,N的坐標(biāo)分別為,則
直線BM的方程為,點G的坐標(biāo)為
因為直線AN和直線AG的斜率分別為
所以
即,故A,G,N三點共線。
設(shè)不等邊三角形ABC的外心與重心分別為M、G,若A(-1,0),B(1,0)且MG//AB.
(Ⅰ)求三角形ABC頂點C的軌跡方程;
(Ⅱ)設(shè)頂點C的軌跡為D,已知直線過點(0,1)并且與曲線D交于P、N兩點,若O為坐標(biāo)原點,滿足OP⊥ON,求直線的方程.
【解析】
第一問因為設(shè)C(x,y)()
……3分
∵M是不等邊三解形ABC的外心,∴|MA|=|MC|,即(2)
由(1)(2)得.所以三角形頂點C的軌跡方程為,.…6分
第二問直線l的方程為y=kx+1
由消y得。 ∵直線l與曲線D交于P、N兩點,∴△=,
又,
∵,∴
得到直線方程。
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com