直線l:y=mx+1與橢圓C:ax2+y2=2交于A.B兩點(diǎn).以O(shè)A.OB為鄰邊作平行四邊形OAPB(O為坐標(biāo)原點(diǎn)) (1)當(dāng)a=2時(shí).求點(diǎn)P的軌跡方程, (2)當(dāng)a,m滿足a+2m2=1.且記平行四邊形OAPB的面積函數(shù)S(a),求證:2<S(a)<4. (1)解:設(shè)P(x,y).則OP中點(diǎn)為E() 由消去y得(2+m2)x2+2mx-1=0設(shè)A(x1,y1),B(x2,y2) 則=-,=m+1= 即AB的中點(diǎn)為E(-,) 于是 消去m,得點(diǎn)P的軌跡方程為2x2+y2-2y=0 (2)證明:由消去y得(a+m2)x2+2mx-1=0進(jìn)一步就可以求出|AB|= ∵O到AB的距離d=·S(a)=|AB|d= ∵a+2m2=1∴0<a<1∴2<S(a)<4 查看更多

 

題目列表(包括答案和解析)

((本小題滿分12分)

 已知圓Cx2+(y-1)2 =5,直線lmx-y+l-m=0,

 (1)求證:對(duì)任意,直線l與圓C總有兩個(gè)不同的交點(diǎn)。

 (2)設(shè)l與圓C交于A、B兩點(diǎn),若| AB | = ,求l的傾斜角;

 (3)求弦AB的中點(diǎn)M的軌跡方程;


 

查看答案和解析>>

((本小題滿分12分)
已知圓Cx2+(y-1)2 =5,直線lmx-y+l-m=0,
(1)求證:對(duì)任意,直線l與圓C總有兩個(gè)不同的交點(diǎn)。
(2)設(shè)l與圓C交于AB兩點(diǎn),若| AB | = ,求l的傾斜角;
(3)求弦AB的中點(diǎn)M的軌跡方程;

查看答案和解析>>


同步練習(xí)冊(cè)答案