4.若x∈R.n∈N*.定義:= =-120.則函數(shù)的奇偶性為 ( ) A.是偶函數(shù)而不是奇函數(shù) B.是奇函數(shù)而不是偶函數(shù) C.既是奇函數(shù)又是偶函數(shù) D.既不是奇函數(shù)又不是偶函數(shù) =x·(x-9)(x-8)x(x+8)[(x-9)+19-1]=x2(x2-9)-(x2-1). 查看更多

 

題目列表(包括答案和解析)

若x∈R、n∈N*,定義:=(-5)(-4)(-3)(-2)(-1)=-120,則函數(shù)的奇偶性為

[  ]

A.是偶函數(shù)而不是奇函數(shù)
B.是奇函數(shù)而不是偶函數(shù)
C.既是奇函數(shù)又是偶函數(shù)
D.既不是奇函數(shù)又不是偶函數(shù)

查看答案和解析>>

若x∈R、n∈N+,定義:M=x(x+1)(x+2)…(x+n-1),例如:M=(-5)(-4)(-3)(-2)(-1)=-120,則函數(shù)f(x)=xM的奇偶性為

[  ]
A.

是偶函數(shù)而不是奇函數(shù)

B.

是奇函數(shù)而不是偶函數(shù)

C.

既是奇函數(shù)又是偶函數(shù)

D.

既不是奇函數(shù)又不是偶函數(shù)

查看答案和解析>>

在統(tǒng)計(jì)學(xué)中,我們學(xué)習(xí)過(guò)方差的概念,其計(jì)算公式為

并且知道,其中為x1、x2、…、xn的平均值.

類(lèi)似地,現(xiàn)定義“絕對(duì)差”的概念如下:設(shè)有n個(gè)實(shí)數(shù)x1、x2、…、xn,稱函數(shù)g(x)=|x-x1|+|x-x2|+…+|x-xn|為此n個(gè)實(shí)數(shù)的絕對(duì)差.

(1)設(shè)有函數(shù)g(x)=|x+1|+|x-1|+|x-2|,試問(wèn)當(dāng)x為何值時(shí),函數(shù)g(x)取到最小值,并求最小值;

(2)設(shè)有函數(shù)g(x)=|x-x1|+|x-x2|+…+|x+x2|,(x∈R,x1<x2<…<xn∈R),

試問(wèn):當(dāng)x為何值時(shí),函數(shù)g(x)取到最小值,并求最小值;

(3)若對(duì)各項(xiàng)絕對(duì)值前的系數(shù)進(jìn)行變化,試求函數(shù)f(x)=3|x+3|+2|x-1|-4|x-5|(x∈R)的最值;

(4)受(3)的啟發(fā),試對(duì)(2)作一個(gè)推廣,給出“加權(quán)絕對(duì)差”的定義,并討論該函數(shù)的最值(寫(xiě)出結(jié)果即可).

查看答案和解析>>


同步練習(xí)冊(cè)答案