22.如圖.△OBC的三個(gè)頂點(diǎn)坐標(biāo)分別為.設(shè)P1為線段BC的中點(diǎn).P2為線段CO的中點(diǎn).P3為線段OP1的中點(diǎn).對(duì)于每一個(gè)正整數(shù)n.Pn+3為線段PnPn+1的中點(diǎn).令Pn的坐標(biāo)為(xn,yn).an=yn+yn+1+yn+2. (1)求a1,a2,a3及an, (2)證明,nÎN*; (3)若記bn=y4n+4-y4n,nÎN*.證明{bn}是等比數(shù)列. 查看更多

 

題目列表(包括答案和解析)

如圖,△OBC的三個(gè)頂點(diǎn)坐標(biāo)分別為(0,0)、(1,0)、(0,2),設(shè)P1為線段BC的中點(diǎn),P2為線段CO的中點(diǎn),P3為線段OP1的中點(diǎn),對(duì)于每一個(gè)正整數(shù)n,Pn+3為線段PnPn+1的中點(diǎn),令Pn的坐標(biāo)為(xn,yn),anyn+yn+1+yn+2

(1)求a1,a2,a3及an;

(2)證明:yn+4=1-,n∈N*;

(3)若記bn=y(tǒng)4n+4-y4n,n∈N*,證明{bn}是等比數(shù)列.

查看答案和解析>>

22.

 

如圖,△OBC的三個(gè)頂點(diǎn)坐標(biāo)分別為(0,0)、(1,0)、(0,2),設(shè)P1為線段BC的中點(diǎn),P2為線段CO的中點(diǎn),P3為線段OP1的中點(diǎn),對(duì)于每一個(gè)正整數(shù)n,Pn+3為線段PnPn+1的中點(diǎn),令Pn的坐標(biāo)為(xn,yn),an=yn+yn+1+yn+2.

(Ⅰ)求a1,a2,a3an;

(Ⅱ)證明:yn+4=1-,n∈N*;

(Ⅲ)若記bn=y4n+4y4n,n∈N*,證明:{bn}是等比數(shù)列.

查看答案和解析>>

(04年浙江卷理)如圖,△OBC的三個(gè)頂點(diǎn)坐標(biāo)分別為(0,0)、(1,0)、(0,2),設(shè)P1為線段BC的中點(diǎn),P2為線段CO的中點(diǎn),P3為線段OP1的中點(diǎn),對(duì)于每一個(gè)正整數(shù)n,Pn+3為線段PnPn+1的中點(diǎn),令Pn的坐標(biāo)為(xn,yn),an=yn+yn+1+yn+2.
(1)求a1,a2,a3an;
(2)證明,nÎN*;
(3)若記bn=y4n+4-y4n,nÎN*,證明{bn}是等比數(shù)列。

查看答案和解析>>

(2004浙江,22)如圖所示,△OBC的三個(gè)頂點(diǎn)坐標(biāo)分別為(00)、(1,0)、(0,2),設(shè)為線段BC的中點(diǎn),為線段CO的中點(diǎn),為線段的中點(diǎn),對(duì)于每一個(gè)正整數(shù)n為線段的中點(diǎn),令的坐標(biāo)為,

(1);

(2)證明:,;

(3)若記,,證明是等比數(shù)列.

查看答案和解析>>

(2013•徐州三模)如圖,在平面直角坐標(biāo)系xOy中,已知橢圓E:
x2
a2
+
y2
b2
=1(a>b>0)
的離心率e=
3
2
,A1,A2分別是橢圓E的左、右兩個(gè)頂點(diǎn),圓A2的半徑為a,過(guò)點(diǎn)A1作圓A2的切線,切點(diǎn)為P,在x軸的上方交橢圓E于點(diǎn)Q.
(1)求直線OP的方程;
(2)求
PQ
QA1
的值;
(3)設(shè)a為常數(shù),過(guò)點(diǎn)O作兩條互相垂直的直線,分別交橢圓于點(diǎn)B、C,分別交圓A點(diǎn)M、N,記三角形OBC和三角形OMN的面積分別為S1,S2.求S1S2的最大值.

查看答案和解析>>


同步練習(xí)冊(cè)答案