題目列表(包括答案和解析)
已知中,內(nèi)角的對邊的邊長分別為,且
(I)求角的大;
(II)若求的最小值.
【解析】第一問,由正弦定理可得:sinBcosC=2sinAcosB-sinCcosB,即sin(B+C)=2sinAcosB,
第二問,
三角函數(shù)的性質(zhì)運用。
解:(Ⅰ)由正弦定理可得:sinBcosC=2sinAcosB-sinCcosB,即sin(B+C)=2sinAcosB,
(Ⅱ)由(Ⅰ)可知
,,則當(dāng) ,即時,y的最小值為.
若函數(shù)在定義域內(nèi)存在區(qū)間,滿足在上的值域為,則稱這樣的函數(shù)為“優(yōu)美函數(shù)”.
(Ⅰ)判斷函數(shù)是否為“優(yōu)美函數(shù)”?若是,求出;若不是,說明理由;
(Ⅱ)若函數(shù)為“優(yōu)美函數(shù)”,求實數(shù)的取值范圍.
【解析】第一問中,利用定義,判定由題意得,由,所以
第二問中, 由題意得方程有兩實根
設(shè)所以關(guān)于m的方程在有兩實根,
即函數(shù)與函數(shù)的圖像在上有兩個不同交點,從而得到t的范圍。
解(I)由題意得,由,所以 (6分)
(II)由題意得方程有兩實根
設(shè)所以關(guān)于m的方程在有兩實根,
即函數(shù)與函數(shù)的圖像在上有兩個不同交點。
給出問題:已知滿足,試判定的形狀.某學(xué)生的解答如下:
解:(i)由余弦定理可得,
,
,
,
故是直角三角形.
(ii)設(shè)外接圓半徑為.由正弦定理可得,原式等價于
,
故是等腰三角形.
綜上可知,是等腰直角三角形.
請問:該學(xué)生的解答是否正確?若正確,請在下面橫線中寫出解題過程中主要用到的思想方法;若不正確,請在下面橫線中寫出你認(rèn)為本題正確的結(jié)果. .
b2+c2-a2 |
2bc |
a2+c2-b2 |
2ac |
2 |
2 |
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com