函數(shù)的反函數(shù)是.則=? 查看更多

 

題目列表(包括答案和解析)

記函數(shù)f(x)的定義域為D,若存在x0∈D,使f(x0)=x0成立,則稱以(x0,x0)為坐標的點為函數(shù)f(x)圖象上的不動點.
(1)若函數(shù)f(x)=
3x+a
x+b
圖象上有兩個關于原點對稱的不動點,求實數(shù)a,b應滿足的條件;
(2)設點P(x,y)到直線y=x的距離d=
|x-y|
2
.在(1)的條件下,若a=8,記函數(shù)f(x)圖象上的兩個不動點分別為A1,A2,P為函數(shù)f(x)圖象上的另一點,其縱坐標yP>3,求點P到直線A1A2距離的最小值及取得最小值時點P的坐標.
(3)下述命題“若定義在R上的奇函數(shù)f(x)圖象上存在有限個不動點,則不動點有奇數(shù)個”是否正確?若正確,請給予證明;若不正確,請舉一反例.若地方不夠,可答在試卷的反面.

查看答案和解析>>

記函數(shù)f(x)的定義域為D,若存在x0∈D,使f(x0)=x0成立,則稱以(x0,x0)為坐標的點為函數(shù)f(x)圖象上的不動點.
(1)若函數(shù)f(x)=
3x+a
x+b
圖象上有兩個關于原點對稱的不動點,求實數(shù)a,b應滿足的條件;
(2)設點P(x,y)到直線y=x的距離d=
|x-y|
2
.在(1)的條件下,若a=8,記函數(shù)f(x)圖象上的兩個不動點分別為A1,A2,P為函數(shù)f(x)圖象上的另一點,其縱坐標yP>3,求點P到直線A1A2距離的最小值及取得最小值時點P的坐標.
(3)下述命題“若定義在R上的奇函數(shù)f(x)圖象上存在有限個不動點,則不動點有奇數(shù)個”是否正確?若正確,請給予證明;若不正確,請舉一反例.若地方不夠,可答在試卷的反面.

查看答案和解析>>

記函數(shù)fx)的定義域為D,若存在,使成立,則稱為坐標的點為函數(shù)fx)圖象上的不動點.

1)若函數(shù)圖象上有兩個關于原點對稱的不動點,求ab應滿足的條件;

2)在(1)的條件下,若a=8,記函數(shù)fx 圖象上有兩個不動點分別為A1,A2,P為函數(shù)fx)圖象上的另一點,其縱坐標>3,求點P到直線A1A2距離的最小值及取得最小值時的坐標;

3)下述命題:若定義在R上的奇函數(shù)fx)圖象上存在有限個不動點,則不動點有奇數(shù)個是否正確?若正確,給予證明;若不正確,請舉一反例.

查看答案和解析>>

設函數(shù)f(x)的定義域為D,若存在x∈D,使f(x)=x成立,則稱以(x,x)為坐標的點為函數(shù)f(x)圖象上的不動點.
(1)若函數(shù)f(x)=圖象上有兩個關于原點對稱的不動點,求a,b應滿足的條件;
(2)在(1)的條件下,若a=8,記函數(shù)f(x)圖象上的兩個不動點分別為A、B,點M為函數(shù)圖象上的另一點,且其縱坐標yM>3,求點M到直線AB距離的最小值及取得最小值時M點的坐標;
(3)下述命題“若定義在R上的奇函數(shù)f(x)圖象上存在有限個不動點,則不動點的有奇數(shù)個”是否正確?若正確,給出證明,并舉一例;若不正確,請舉一反例說明.

查看答案和解析>>

已知函數(shù)f(x)=loga(
x2+m
+x),(a>0,a≠1)
為奇函數(shù),
1)求實數(shù)m的值;
2)求f(x)的反函數(shù)f-1(x);
3)若兩個函數(shù)F(x)與G(x)在[p,q]上恒滿足|F(x)-G(x)|>2,則稱函數(shù)F(x)與G(x)在[p,q]上是分離的.試判斷函數(shù)f(x)的反函數(shù)f-1(x)與g(x)=ax在[1,2]上是否分離?若分離,求出a的取值范圍;若不分離,請說明理由.

查看答案和解析>>


同步練習冊答案