已知不等式 (1)解此不等式, (2)若在不等式的解中.求的范圍. 查看更多

 

題目列表(包括答案和解析)

  已知  設P:函數(shù)在R上單調遞減;  Q:不等式的解集為R,若“PQ”是真命題,“PQ”是假命題,求的取值范圍.

[解題思路]:“PQ”是真命題,“PQ”是假命題,根據(jù)真假表知,P,Q之中一真一假,因此有兩種情況,要分類討論.

查看答案和解析>>

已知數(shù)列是首項為的等比數(shù)列,且滿足.

(1)   求常數(shù)的值和數(shù)列的通項公式;

(2)   若抽去數(shù)列中的第一項、第四項、第七項、……、第項、……,余下的項按原來的順序組成一個新的數(shù)列,試寫出數(shù)列的通項公式;

(3) 在(2)的條件下,設數(shù)列的前項和為.是否存在正整數(shù),使得?若存在,試求所有滿足條件的正整數(shù)的值;若不存在,請說明理由.

【解析】第一問中解:由,,

又因為存在常數(shù)p使得數(shù)列為等比數(shù)列,

,所以p=1

故數(shù)列為首項是2,公比為2的等比數(shù)列,即.

此時也滿足,則所求常數(shù)的值為1且

第二問中,解:由等比數(shù)列的性質得:

(i)當時,;

(ii) 當時,

所以

第三問假設存在正整數(shù)n滿足條件,則,

則(i)當時,

 

查看答案和解析>>

已知函數(shù)時都取得極值.

(1)求的值及函數(shù)的單調區(qū)間;www.7caiedu.cn     

(2)若對,不等式恒成立,求的取值范圍.

【解析】根據(jù)的兩個根,可求出a,b的值,然后利用導數(shù)確定其單調區(qū)間即可.

(2)此題本質是利用導數(shù)其函數(shù)f(x)在區(qū)間[-1,2]上的最大值,然后利用,即可解出c的取值范圍.

 

查看答案和解析>>

已知函數(shù)其中為自然對數(shù)的底數(shù), .(Ⅰ)設,求函數(shù)的最值;(Ⅱ)若對于任意的,都有成立,求的取值范圍.

【解析】第一問中,當時,,.結合表格和導數(shù)的知識判定單調性和極值,進而得到最值。

第二問中,∵,,      

∴原不等式等價于:,

, 亦即

分離參數(shù)的思想求解參數(shù)的范圍

解:(Ⅰ)當時,,

上變化時,的變化情況如下表:

 

 

1/e

時,,

(Ⅱ)∵,      

∴原不等式等價于:,

, 亦即

∴對于任意的,原不等式恒成立,等價于恒成立,

∵對于任意的時, (當且僅當時取等號).

∴只需,即,解之得.

因此,的取值范圍是

 

查看答案和解析>>

已知函數(shù)數(shù)學公式,且此函數(shù)圖象過點(1,5)
(1)求實數(shù)m的值并判斷f(x)的奇偶性;
(2)若函數(shù)f(x)在(0,2)上單調遞減,解關于實數(shù)x的不等式數(shù)學公式

查看答案和解析>>


同步練習冊答案