若有一個(gè)等比數(shù)列的前5項(xiàng)的和是.前10項(xiàng)的和是.則公比是 . 查看更多

 

題目列表(包括答案和解析)

在數(shù)列{an}中,a1=5,an=qan-1+d(n≥2)
(1)數(shù)列{an}有可能是等差數(shù)列或等比數(shù)列嗎?若可能給出一個(gè)成立的條件(不必證明);若不可能,請(qǐng)說(shuō)明理由;
(2)若q=2,d=3,是否存在常數(shù)x,使得數(shù)列{an+x}為等比數(shù)列;
(3)在(2)的條件下,設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,求滿(mǎn)足Sn≥2009的最小自然數(shù)n的值.

查看答案和解析>>

在數(shù)列{an}中,a1=5,an=qan-1+d(n≥2)
(1)數(shù)列{an}有可能是等差數(shù)列或等比數(shù)列嗎?若可能給出一個(gè)成立的條件(不必證明);若不可能,請(qǐng)說(shuō)明理由;
(2)若q=2,d=3,是否存在常數(shù)x,使得數(shù)列{an+x}為等比數(shù)列;
(3)在(2)的條件下,設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,求滿(mǎn)足Sn≥2009的最小自然數(shù)n的值.

查看答案和解析>>

等差數(shù)列{an}的首項(xiàng)和公差都是
23
,記{an}前n項(xiàng)和為Sn.等比數(shù)列{bn}各項(xiàng)均為正數(shù),公比為q,記{bn}的前n項(xiàng)和為T(mén)n
(Ⅰ) 寫(xiě)出Si(i=1,2,3,4,5)構(gòu)成的集合A;
(Ⅱ) 若q為正整數(shù),問(wèn)是否存在大于1的正整數(shù)k,使得Tk,T2k同時(shí)為集合A中的元素?若存在,寫(xiě)出所有符合條件的{bn}的通項(xiàng)公式;若不存在,請(qǐng)說(shuō)明理由;
(Ⅲ) 若將Sn中的整數(shù)項(xiàng)按從小到大的順序構(gòu)成數(shù)列{cn},求{cn}的一個(gè)通項(xiàng)公式.

查看答案和解析>>

已知數(shù)列{an}的前n項(xiàng)和為Sn,a1=1,a4=8,Sn=b•qn+c(q≠0,q≠±1,bc≠0,b+c=0),現(xiàn)把數(shù)列{an}的各項(xiàng)排成如圖所示的三角形形狀.記A(m,n)為第m行從左起第n個(gè)數(shù)(m、n∈N*).有下列命題:
①{an}為等比數(shù)列且其公比q=±2;
②當(dāng)n=2m(m>3)時(shí),A(m,n)不存在;
a28=A(6,9),A(11,1)=2100;
④假設(shè)m為大于5的常數(shù),且A(m,1)=am1,A(m,2)=am2A(m,k)=amk,其中amk為A(m,n)的最大值,從所有m1,m2,m3,…,mk中任取一個(gè)數(shù),若取得的數(shù)恰好為奇數(shù)的概率為
m-12m-1
,則m必然為偶數(shù).
其中你認(rèn)為正確的所有命題的序號(hào)是
②③④
②③④

查看答案和解析>>

已知數(shù)列{an}的前n項(xiàng)和為(q≠0,q≠±1,bc≠0,b+c=0),現(xiàn)把數(shù)列{an}的各項(xiàng)排成如圖所示的三角形形狀.記A(m,n)為第m行從左起第n個(gè)數(shù)(m、n∈N*).有下列命題:
①{an}為等比數(shù)列且其公比q=±2;
②當(dāng)n=2m(m>3)時(shí),A(m,n)不存在;
;
④假設(shè)m為大于5的常數(shù),且,,其中為A(m,n)的最大值,從所有m1,m2,m3,…,mk中任取一個(gè)數(shù),若取得的數(shù)恰好為奇數(shù)的概率為,則m必然為偶數(shù).
其中你認(rèn)為正確的所有命題的序號(hào)是   

查看答案和解析>>


同步練習(xí)冊(cè)答案