題目列表(包括答案和解析)
13. 若a、b、c、d均為實數(shù),使不等式>>0和ad<bc都成立的一組值(a、b、c、d)是 。(只要寫出適合條件的一組值即可)
(二)選考內(nèi)容與要求
1.幾何證明選講
(1)了解平行線截割定理,會證直角三角形射影定理.
(2)會證圓周角定理、圓的切線的判定定理及性質(zhì)定理.
(3)會證相交弦定理、圓內(nèi)接四邊形的性質(zhì)定理與判定定理、切割線定理.
(4)了解平行投影的含義,通過圓柱與平面的位置關(guān)系,了解平行投影;會證平面與圓柱面的截線是橢圓(特殊情形是圓).
(5)了解下面定理:
定理 在空間中,取直線為軸,直線與相交于點,其夾角為圍繞旋轉(zhuǎn)得到以為頂點,為母線的圓錐面,任取平面π,若它與軸交角為(π與平行,記=0),則:
(i) >,平面π與圓錐的交線為橢圓;
(ii) =,平面π與圓錐的交線為拋物線;
(iii)<,平面π與圓錐的交線為雙曲線.
(6)會利用丹迪林(Dandelin)雙球(這兩個球位于圓錐的內(nèi)部,一個位于平面π的上方,一個位于平面的下方,并且與平面π及圓錐均相切)證明上述定理(i)情況.
(7)會證明以下結(jié)果:
(i) 在(6)中,一個丹迪林球與圓錐面的交線為一個圓,并與圓錐的底面平行,記這個圓所在平面為π';
(ii)如果平面π與平面π'的交線為m,在(5)(i)中橢圓上任取一點A,該丹迪林球與平面π的切點為F,則點A到點F的距離與點A到直線m的距離比是小于1的常數(shù)e.(稱點F為這個橢圓的焦點,直線m為橢圓的準(zhǔn)線,常數(shù)e為離心率.)
(8)了解定理(5)(iii)中的證明,了解當(dāng)無限接近時,平面π的極限結(jié)果.
2.坐標(biāo)系與參數(shù)方程
(1)坐標(biāo)系
、 理解坐標(biāo)系的作用.
、 了解在平面直角坐標(biāo)系伸縮變換作用下平面圖形的變化情況.
、 能在極坐標(biāo)系中用極坐標(biāo)表示點的位置,理解在極坐標(biāo)系和平面直角坐標(biāo)系中表示點的位置的區(qū)別,能進行極坐標(biāo)和直角坐標(biāo)的互化.
、 能在極坐標(biāo)系中給出簡單圖形(如過極點的直線、過極點或圓心在極點的圓)的方程.通過比較這些圖形在極坐標(biāo)系和平面直角坐標(biāo)系中的方程,理解用方程表示平面圖形時選擇適當(dāng)坐標(biāo)系的意義.
、 了解柱坐標(biāo)系、球坐標(biāo)系中表示空間中點的位置的方法,并與空間直角坐標(biāo)系中表示點的位置的方法相比較,了解它們的區(qū)別.
(2)參數(shù)方程
① 了解參數(shù)方程,了解參數(shù)的意義.
、 能選擇適當(dāng)?shù)膮?shù)寫出直線、圓和圓錐曲線的參數(shù)方程.
、 了解平擺線、漸開線的生成過程,并能推導(dǎo)出它們的參數(shù)方程.
④ 了解其他擺線的生成過程,了解擺線在實際中的應(yīng)用,了解擺線在表示行星運動軌道中的作用.
Ⅲ.考試形式與試卷結(jié)構(gòu)
考試采用閉卷、筆答形式,全卷滿分150分,考試時間120分鐘.
試卷一般包括選擇題、填空題和解答題等題型.選擇題是四選一型的單項選擇題;填空題只要求直接寫結(jié)果,不必寫出計算過程或推證過程;解答題包括計算題、證明題和應(yīng)用題等,解答題應(yīng)寫出文字說明、演算步驟和推證過程.
試卷包括容易題、中等題和難題,以中等題為主.
試卷包括必做試題和選做試題.
(一)必考內(nèi)容與要求
1.集合
(1)集合的含義與表示
、 了解集合的含義、元素與集合的“屬于”關(guān)系.
、 能用自然語言、圖形語言、集合語言(列舉法或描述法)描述不同的具體問題.
(2)集合間的基本關(guān)系
① 理解集合之間包含與相等的含義,能識別給定集合的子集.
、 在具體情境中,了解全集與空集的含義.
(3)集合的基本運算
、 理解兩個集合的并集與交集的含義,會求兩個簡單集合的并集與交集.
、 理解在給定集合中一個子集的補集的含義,會求給定子集的補集.
、 能使用韋恩圖(Venn)表達集合的關(guān)系及運算.
2.函數(shù)概念與基本初等函數(shù)Ⅰ(指數(shù)函數(shù)、對數(shù)函數(shù)、冪函數(shù))
(1)函數(shù)
、 了解構(gòu)成函數(shù)的要素,會求一些簡單函數(shù)的定義域和值域;了解映射的概念.
② 在實際情境中,會根據(jù)不同的需要選擇恰當(dāng)?shù)姆椒?如圖像法、列表法、解析法)表示函數(shù).
、 了解簡單的分段函數(shù),并能簡單應(yīng)用.
④ 理解函數(shù)的單調(diào)性、最大(小)值及其幾何意義;結(jié)合具體函數(shù),了解函數(shù)奇偶性的含義.
、 會運用函數(shù)圖像理解和研究函數(shù)的性質(zhì).
(2)指數(shù)函數(shù)
① 了解指數(shù)函數(shù)模型的實際背景.
、 理解有理指數(shù)冪的含義,了解實數(shù)指數(shù)冪的意義,掌握冪的運算.
、 理解指數(shù)函數(shù)的概念,并理解指數(shù)函數(shù)的單調(diào)性與函數(shù)圖像通過的特殊點.
、 知道指數(shù)函數(shù)是一類重要的函數(shù)模型.
(3)對數(shù)函數(shù)
、 理解對數(shù)的概念及其運算性質(zhì),知道用換底公式能將一般對數(shù)轉(zhuǎn)化成自然對數(shù)或常用對數(shù);了解對數(shù)在簡化運算中的作用.
、 理解對數(shù)函數(shù)的概念;理解對數(shù)函數(shù)的單調(diào)性,掌握函數(shù)圖像通過的特殊點.
③ 知道對數(shù)函數(shù)是一類重要的函數(shù)模型;
④ 了解指數(shù)函數(shù)與對數(shù)函數(shù)互為反函數(shù)().
(4)冪函數(shù)
① 了解冪函數(shù)的概念.
② 結(jié)合函數(shù)的圖像,了解它們的變化情況.
(5)函數(shù)與方程
、 結(jié)合二次函數(shù)的圖像,了解函數(shù)的零點與方程根的聯(lián)系,判斷一元二次方程根的存在性及根的個數(shù).
② 根據(jù)具體函數(shù)的圖像,能夠用二分法求相應(yīng)方程的近似解.
(6)函數(shù)模型及其應(yīng)用
、 了解指數(shù)函數(shù)、對數(shù)函數(shù)以及冪函數(shù)的增長特征.知道直線上升、指數(shù)增長、對數(shù)增長等不同函數(shù)類型增長的含義.
、 了解函數(shù)模型(如指數(shù)函數(shù)、對數(shù)函數(shù)、冪函數(shù)、分段函數(shù)等在社會生活中普遍使用的函數(shù)模型)的廣泛應(yīng)用.
3.立體幾何初步
(1)空間幾何體
① 認(rèn)識柱、錐、臺、球及其簡單組合體的結(jié)構(gòu)特征,并能運用這些特征描述現(xiàn)實生活中簡單物體的結(jié)構(gòu).
、 能畫出簡單空間圖形(長方體、球、圓柱、圓錐、棱柱等的簡易組合)的三視圖,能識別上述的三視圖所表示的立體模型,會用斜二測法畫出它們的直觀圖.
③ 會用平行投影與中心投影兩種方法,畫出簡單空間圖形的三視圖與直觀圖,了解空間圖形的不同表示形式.
、 會畫某些建筑物的視圖與直觀圖(在不影響圖形特征的基礎(chǔ)上,尺寸、線條等不作嚴(yán)格要求).
、 了解球、棱柱、棱錐、臺的表面積和體積的計算公式(不要求記憶公式).
(2)點、直線、平面之間的位置關(guān)系
① 理解空間直線、平面位置關(guān)系的定義,并了解如下可以作為推理依據(jù)的公理和定理.
◆公理1:如果一條直線上的兩點在一個平面內(nèi),那么這條直線上所有的點在此平面內(nèi).
◆公理2:過不在同一條直線上的三點,有且只有一個平面.
◆公理3:如果兩個不重合的平面有一個公共點,那么它們有且只有一條過該點的公共直線.
◆公理4:平行于同一條直線的兩條直線互相平行.
◆定理:空間中如果一個角的兩邊與另一個角的兩邊分別平行,那么這兩個角相等或互補.
、 以立體幾何的上述定義、公理和定理為出發(fā)點,認(rèn)識和理解空間中線面平行、垂直的有關(guān)性質(zhì)與判定.
理解以下判定定理.
◆如果平面外一條直線與此平面內(nèi)的一條直線平行,那么該直線與此平面平行.
◆如果一個平面內(nèi)的兩條相交直線與另一個平面都平行,那么這兩個平面平行.
◆如果一條直線與一個平面內(nèi)的兩條相交直線都垂直,那么該直線與此平面垂直.
◆如果一個平面經(jīng)過另一個平面的垂線,那么這兩個平面互相垂直.
理解以下性質(zhì)定理,并能夠證明.
◆如果一條直線與一個平面平行,經(jīng)過該直線的任一個平面與此平面相交,那么這條直線就和交線平行.
◆如果兩個平行平面同時和第三個平面相交,那么它們的交線相互平行.
◆垂直于同一個平面的兩條直線平行.
◆如果兩個平面垂直,那么一個平面內(nèi)垂直于它們交線的直線與另一個平面垂直.
、 能運用公理、定理和已獲得的結(jié)論證明一些空間位置關(guān)系的簡單命題.
4.平面解析幾何初步
(1)直線與方程
① 在平面直角坐標(biāo)系中,結(jié)合具體圖形,確定直線位置的幾何要素.
、 理解直線的傾斜角和斜率的概念,掌握過兩點的直線斜率的計算公式.
、 能根據(jù)兩條直線的斜率判定這兩條直線平行或垂直.
④ 掌握確定直線位置的幾何要素,掌握直線方程的幾種形式(點斜式、兩點式及一般式),了解斜截式與一次函數(shù)的關(guān)系.
、 能用解方程組的方法求兩直線的交點坐標(biāo).
、 掌握兩點間的距離公式、點到直線的距離公式,會求兩條平行直線間的距離.
(2)圓與方程
、 掌握確定圓的幾何要素,掌握圓的標(biāo)準(zhǔn)方程與一般方程.
、 能根據(jù)給定直線、圓的方程,判斷直線與圓的位置關(guān)系;能根據(jù)給定兩個圓的方程,判斷兩圓的位置關(guān)系.
③ 能用直線和圓的方程解決一些簡單的問題.
④ 初步了解用代數(shù)方法處理幾何問題的思想.
(3)空間直角坐標(biāo)系
① 了解空間直角坐標(biāo)系,會用空間直角坐標(biāo)表示點的位置.
、 會推導(dǎo)空間兩點間的距離公式.
5.算法初步
(1)算法的含義、程序框圖
、 了解算法的含義,了解算法的思想.
、 理解程序框圖的三種基本邏輯結(jié)構(gòu):順序、條件分支、循環(huán).
(2)基本算法語句
理解幾種基本算法語句――輸入語句、輸出語句、賦值語句、條件語句、循環(huán)語句的含義.
6.統(tǒng)計
(1)隨機抽樣
、 理解隨機抽樣的必要性和重要性.
、 會用簡單隨機抽樣方法從總體中抽取樣本;了解分層抽樣和系統(tǒng)抽樣方法.
(2)總體估計
① 了解分布的意義和作用,會列頻率分布表,會畫頻率分布直方圖、頻率折線圖、莖葉圖,理解它們各自的特點.
② 理解樣本數(shù)據(jù)標(biāo)準(zhǔn)差的意義和作用,會計算數(shù)據(jù)標(biāo)準(zhǔn)差.
、 能從樣本數(shù)據(jù)中提取基本的數(shù)字特征(如平均數(shù)、標(biāo)準(zhǔn)差),并作出合理的解釋.
④ 會用樣本的頻率分布估計總體分布,會用樣本的基本數(shù)字特征估計總體的基本數(shù)字特征,理解用樣本估計總體的思想.
、 會用隨機抽樣的基本方法和樣本估計總體的思想,解決一些簡單的實際問題.
(3)變量的相關(guān)性
、 會作兩個有關(guān)聯(lián)變量數(shù)據(jù)的散點圖,會利用散點圖認(rèn)識變量間的相關(guān)關(guān)系.
② 了解最小二乘法的思想,能根據(jù)給出的線性回歸方程系數(shù)公式建立線性回歸方程.
7.概率
(1)事件與概率
、 了解隨機事件發(fā)生的不確定性和頻率的穩(wěn)定性,了解概率的意義,了解頻率與概率的區(qū)別.
② 了解兩個互斥事件的概率加法公式.
(2)古典概型
① 理解古典概型及其概率計算公式.
② 會計算一些隨機事件所含的基本事件數(shù)及事件發(fā)生的概率.
(3)隨機數(shù)與幾何概型
① 了解隨機數(shù)的意義,能運用模擬方法估計概率.
② 了解幾何概型的意義.
8.基本初等函數(shù)Ⅱ(三角函數(shù))
(1)任意角的概念、弧度制
① 了解任意角的概念.
② 了解弧度制概念,能進行弧度與角度的互化.
(2)三角函數(shù)
、 理解任意角三角函數(shù)(正弦、余弦、正切)的定義.
② 能利用單位圓中的三角函數(shù)線推導(dǎo)出,π±的正弦、余弦、正切的誘導(dǎo)公式,能畫出的圖像,了解三角函數(shù)的周期性.
、 理解正弦函數(shù)、余弦函數(shù)在區(qū)間[0,2π]的性質(zhì)(如單調(diào)性、最大和最小值與軸交點等).理解正切函數(shù)在區(qū)間()的單調(diào)性.
④ 理解同角三角函數(shù)的基本關(guān)系式:
、 了解函數(shù)的物理意義;能畫出的圖像,了解參數(shù)對函數(shù)圖像變化的影響.
、 了解三角函數(shù)是描述周期變化現(xiàn)象的重要函數(shù)模型,會用三角函數(shù)解決一些簡單實際問題.
9.平面向量
(1)平面向量的實際背景及基本概念
① 了解向量的實際背景.
② 理解平面向量的概念及向量相等的含義.
③ 理解向量的幾何表示.
(2)向量的線性運算
① 掌握向量加法、減法的運算,并理解其幾何意義.
② 掌握向量數(shù)乘的運算及其意義,理解兩個向量共線的含義.
③ 了解向量線性運算的性質(zhì)及其幾何意義.
(3)平面向量的基本定理及坐標(biāo)表示
、 了解平面向量的基本定理及其意義.
、 掌握平面向量的正交分解及其坐標(biāo)表示.
③ 會用坐標(biāo)表示平面向量的加法、減法與數(shù)乘運算.
④ 理解用坐標(biāo)表示的平面向量共線的條件.
(4)平面向量的數(shù)量積
① 理解平面向量數(shù)量積的含義及其物理意義.
② 了解平面向量的數(shù)量積與向量投影的關(guān)系.
③ 掌握數(shù)量積的坐標(biāo)表達式,會進行平面向量數(shù)量積的運算.
④ 能運用數(shù)量積表示兩個向量的夾角,會用數(shù)量積判斷兩個平面向量的垂直關(guān)系.
(5)向量的應(yīng)用
① 會用向量方法解決某些簡單的平面幾何問題.
② 會用向量方法解決簡單的力學(xué)問題與其他一些實際問題.
10.三角恒等變換
(1)和與差的三角函數(shù)公式
① 會用向量的數(shù)量積推導(dǎo)出兩角差的余弦公式.
② 能利用兩角差的余弦公式導(dǎo)出兩角差的正弦、正切公式.
③ 能利用兩角差的余弦公式導(dǎo)出兩角和的正弦、余弦、正切公式,導(dǎo)出二倍角的正弦、余弦、正切公式,了解它們的內(nèi)在聯(lián)系.
(2)簡單的三角恒等變換
能運用上述公式進行簡單的恒等變換(包括導(dǎo)出積化和差、和差化積、半角公式,但對這三組公式不要求記憶).
11.解三角形
(1)正弦定理和余弦定理
掌握正弦定理、余弦定理,并能解決一些簡單的三角形度量問題.
(2) 應(yīng)用
能夠運用正弦定理、余弦定理等知識和方法解決一些與測量和幾何計算有關(guān)的實際問題.
12.?dāng)?shù)列
(1)數(shù)列的概念和簡單表示法
① 了解數(shù)列的概念和幾種簡單的表示方法(列表、圖像、通項公式).
② 了解數(shù)列是自變量為正整數(shù)的一類函數(shù).
(2)等差數(shù)列、等比數(shù)列
、 理解等差數(shù)列、等比數(shù)列的概念.
、 掌握等差數(shù)列、等比數(shù)列的通項公式與前n項和公式.
、 能在具體的問題情境中,識別數(shù)列的等差關(guān)系或等比關(guān)系,并能用有關(guān)知識解決相應(yīng)的問題.
、 了解等差數(shù)列與一次函數(shù)、等比數(shù)列與指數(shù)函數(shù)的關(guān)系.
13.不等式
(1)不等關(guān)系
了解現(xiàn)實世界和日常生活中的不等關(guān)系,了解不等式(組)的實際背景.
(2)一元二次不等式
、 會從實際情境中抽象出一元二次不等式模型.
、 通過函數(shù)圖像了解一元二次不等式與相應(yīng)的二次函數(shù)、一元二次方程的聯(lián)系.
、 會解一元二次不等式,對給定的一元二次不等式,會設(shè)計求解的程序框圖.
(3)二元一次不等式組與簡單線性規(guī)劃問題
① 會從實際情境中抽象出二元一次不等式組.
、 了解二元一次不等式的幾何意義,能用平面區(qū)域表示二元一次不等式組.
③ 會從實際情境中抽象出一些簡單的二元線性規(guī)劃問題,并能加以解決.
(4)基本不等式:
、 了解基本不等式的證明過程.
、 會用基本不等式解決簡單的最大(小)值問題.
14.常用邏輯用語
(1)命題及其關(guān)系
、 了解命題及其逆命題、否命題與逆否命題.
、 理解必要條件、充分條件與充要條件的意義,會分析四種命題的相互關(guān)系.
(2)簡單的邏輯聯(lián)結(jié)詞
了解邏輯聯(lián)結(jié)詞“或”、“且”、“非”的含義.
(3)全稱量詞與存在量詞
、 理解全稱量詞與存在量詞的意義.
、 能正確地對含有一個量詞的命題進行否定.
15.圓錐曲線與方程
(1)圓錐曲線
① 了解圓錐曲線的實際背景,了解在刻畫現(xiàn)實世界和解決實際問題中的作用.
② 掌握橢圓的定義、幾何圖形、標(biāo)準(zhǔn)方程及簡單幾何性質(zhì).
、 了解雙曲線、拋物線的定義、幾何圖形和標(biāo)準(zhǔn)方程,知道它們的簡單幾何性質(zhì).
④ 理解數(shù)形結(jié)合的思想.
、 了解圓錐曲線的簡單應(yīng)用.
16.導(dǎo)數(shù)及其應(yīng)用
(1)導(dǎo)數(shù)概念及其幾何意義
① 了解導(dǎo)數(shù)概念的實際背景.
、 理解導(dǎo)數(shù)的幾何意義.
(2)導(dǎo)數(shù)的運算
① 能根據(jù)導(dǎo)數(shù)定義,求函數(shù)的導(dǎo)數(shù).
、 能利用表1給出的基本初等函數(shù)的導(dǎo)數(shù)公式和導(dǎo)數(shù)的四則運算法則求簡單函數(shù)的導(dǎo)數(shù).
表1:常見基本初等函數(shù)的導(dǎo)數(shù)公式和常用導(dǎo)數(shù)運算公式:
(C為常數(shù));, n∈N+;;
; ; ; ; .
法則1 .
法則2 .
法則3 .
(3)導(dǎo)數(shù)在研究函數(shù)中的應(yīng)用
、 了解函數(shù)單調(diào)性和導(dǎo)數(shù)的關(guān)系;能利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,會求函數(shù)的單調(diào)區(qū)間,對多項式函數(shù)一般不超過三次.
② 了解函數(shù)在某點取得極值的必要條件和充分條件;會用導(dǎo)數(shù)求函數(shù)的極大值、極小值,對多項式函數(shù)一般不超過三次;會求閉區(qū)間上函數(shù)的最大值、最小值,對多項式函數(shù)一般不超過三次.
(4)生活中的優(yōu)化問題.
會利用導(dǎo)數(shù)解決某些實際問題.
17.統(tǒng)計案例
了解下列一些常見的統(tǒng)計方法,并能應(yīng)用這些方法解決一些實際問題.
(1) 獨立檢驗
了解獨立性檢驗(只要求2×2列聯(lián)表)的基本思想、方法及其簡單應(yīng)用.
(2) 假設(shè)檢驗
了解假設(shè)檢驗的基本思想、方法及其簡單應(yīng)用.
(3) 聚類分析
了解聚類分析的基本思想、方法及其簡單應(yīng)用.
(4) 回歸分析
了解回歸的基本思想、方法及其簡單應(yīng)用.
18.推理與證明
(1)合情推理與演繹推理
① 了解合情推理的含義,能利用歸納和類比等進行簡單的推理,了解合情推理在數(shù)學(xué)發(fā)現(xiàn)中的作用.
、 了解演繹推理的重要性,掌握演繹推理的基本模式,并能運用它們進行一些簡單推理.
③ 了解合情推理和演繹推理之間的聯(lián)系和差異.
(2)直接證明與間接證明
、 了解直接證明的兩種基本方法:分析法和綜合法;了解分析法和綜合法的思考過程、特點.
、 了解間接證明的一種基本方法──反證法;了解反證法的思考過程、特點.
19.?dāng)?shù)系的擴充與復(fù)數(shù)的引入
(1)復(fù)數(shù)的概念
① 理解復(fù)數(shù)的基本概念.
② 理解復(fù)數(shù)相等的充要條件.
③ 了解復(fù)數(shù)的代數(shù)表示法及其幾何意義.
(2)復(fù)數(shù)的四則運算
① 會進行復(fù)數(shù)代數(shù)形式的四則運算.
② 了解復(fù)數(shù)代數(shù)形式的加、減運算的幾何意義.
20.框圖
(1)流程圖
① 了解程序框圖.
、 了解工序流程圖(即統(tǒng)籌圖).
③ 能繪制簡單實際問題的流程圖,了解流程圖在解決實際問題中的作用.
(2)結(jié)構(gòu)圖
① 了解結(jié)構(gòu)圖.
② 會運用結(jié)構(gòu)圖梳理已學(xué)過的知識、整理收集到的資料信息.
本部分包括必考內(nèi)容和選考內(nèi)容兩部分.必考內(nèi)容為《課程標(biāo)準(zhǔn)》的必修內(nèi)容和選修系列1的內(nèi)容.選考內(nèi)容為《課程標(biāo)準(zhǔn)》的選修系列4的三個專題,這三個專題是否選考及選考專題的內(nèi)容和數(shù)量由各省區(qū)自行決定.
4.考查要求
數(shù)學(xué)學(xué)科的系統(tǒng)性和嚴(yán)密性決定了數(shù)學(xué)知識之間深刻的內(nèi)在聯(lián)系,包括各部分知識在各自的發(fā)展過程中的縱向聯(lián)系和橫向聯(lián)系,要善于從本質(zhì)上抓住這些聯(lián)系,進而通過分類、梳理、綜合,構(gòu)建數(shù)學(xué)試卷的結(jié)構(gòu)框架.
(1)對數(shù)學(xué)基礎(chǔ)知識的考查,既要全面又要突出重點,對于支撐學(xué)科知識體系的重點內(nèi)容,要占有較大的比例,構(gòu)成數(shù)學(xué)試卷的主體,注重學(xué)科的內(nèi)在聯(lián)系和知識的綜合性,不刻意追求知識的覆蓋面.從學(xué)科的整體高度和思維價值的高度考慮問題,在知識網(wǎng)絡(luò)交匯點設(shè)計試題,使對數(shù)學(xué)基礎(chǔ)知識的考查達到必要的深度.
(2)對數(shù)學(xué)思想方法的考查是對數(shù)學(xué)知識在更高層次上的抽象和概括的考查,考查時必須要與數(shù)學(xué)知識相結(jié)合,通過數(shù)學(xué)知識的考查,反映考生對數(shù)學(xué)思想方法的掌握程度.
(3)對數(shù)學(xué)能力的考查,強調(diào)“以能力立意”,就是以數(shù)學(xué)知識為載體,從問題入手,把握學(xué)科的整體意義,用統(tǒng)一的數(shù)學(xué)觀點組織材料,側(cè)重體現(xiàn)對知識的理解和應(yīng)用,尤其是綜合和靈活的應(yīng)用,以此來檢測考生將知識遷移到不同情境中去的能力,從而檢測出考生個體理性思維的廣度和深度,以及進一步學(xué)習(xí)的潛能.
對能力的考查要全面考查能力,強調(diào)綜合性、應(yīng)用性,并要切合學(xué)生實際。對推理論證能力和抽象概括能力的考查貫穿于全卷,是考查的重點,強調(diào)其科學(xué)性、嚴(yán)謹(jǐn)性、抽象性。對空間想象能力的考查,主要體現(xiàn)在對文字語言、符號語言及圖形語言的互相轉(zhuǎn)化。對運算求解能力的考查主要是算法和推理的考查,考查以代數(shù)運算為主。數(shù)據(jù)處理能力的考查主要是運用概率統(tǒng)計的基本方法和思想解決實際問題的能力。
(4)對應(yīng)用意識的考查主要采用解決應(yīng)用問題的形式.命題時要堅持“貼近生活,背景公平,控制難度”的原則,試題設(shè)計要切合中學(xué)數(shù)學(xué)教學(xué)的實際,考慮學(xué)生的年齡特點和實踐經(jīng)驗,使數(shù)學(xué)應(yīng)用問題的難度符合考生的水平.
(5)對創(chuàng)新意識的考查是對高層次理性思維的考查.在考試中創(chuàng)設(shè)新穎的問題情境,構(gòu)造有一定深度和廣度的數(shù)學(xué)問題,要注重問題的多樣化,體現(xiàn)思維的發(fā)散性.精心設(shè)計考查數(shù)學(xué)主體內(nèi)容,體現(xiàn)數(shù)學(xué)素質(zhì)的試題;反映數(shù)、形運動變化的試題;研究型、探索型、開放型的試題.
數(shù)學(xué)科的命題,在考查基礎(chǔ)知識的基礎(chǔ)上,注重對數(shù)學(xué)思想方法的考查,注重對數(shù)學(xué)能力的考查,展現(xiàn)數(shù)學(xué)的科學(xué)價值和人文價值,同時兼顧試題的基礎(chǔ)性、綜合性和現(xiàn)實性,重視試題間的層次性,合理調(diào)控綜合程度,堅持多角度、多層次的考查,努力實現(xiàn)全面考查綜合數(shù)學(xué)素養(yǎng)的要求.
3.個性品質(zhì)要求
個性品質(zhì)是指考生個體的情感、態(tài)度和價值觀.具有一定的數(shù)學(xué)視野,認(rèn)識數(shù)學(xué)的科學(xué)價值和人文價值,崇尚數(shù)學(xué)的理性精神,形成審慎的思維習(xí)慣,體會數(shù)學(xué)的美學(xué)意義.
要求考生克服緊張情緒,以平和的心態(tài)參加考試,合理支配考試時間,以實事求是的科學(xué)態(tài)度解答試題,樹立戰(zhàn)勝困難的信心,體現(xiàn)鍥而不舍的精神.
2.能力要求
能力是指空間想像能力、抽象概括能力、推理論證能力、運算求解能力、數(shù)據(jù)處理能力以及應(yīng)用意識和創(chuàng)新意識.
(1)空間想像能力:能根據(jù)條件作出正確的圖形,根據(jù)圖形想像出直觀形象;能正確地分析出圖形中基本元素及其相互關(guān)系;能對圖形進行分解、組合;會運用圖形與圖表等手段形象地揭示問題的本質(zhì).
空間想像能力是對空間形式的觀察、分析、抽象的能力.主要表現(xiàn)為識圖、畫圖和對圖形的想像能力.識圖是指觀察研究所給圖形中幾何元素之間的相互關(guān)系;畫圖是指將文字語言和符號語言轉(zhuǎn)化為圖形語言,以及對圖形添加輔助圖形或?qū)D形進行各種變換.對圖形的想像主要包括有圖想圖和無圖想圖兩種,是空間想像能力高層次的標(biāo)志.
(2)抽象概括能力:抽象是指舍棄事物非本質(zhì)的屬性,揭示其本質(zhì)的屬性;概括是指把僅僅屬于某一類對象的共同屬性區(qū)分出來的思維過程.抽象和概括是相互聯(lián)系的,沒有抽象就不可能有概括,而概括必須在抽象的基礎(chǔ)上得出某一觀點或作出某項結(jié)論.
抽象概括能力就是從具體的、生動的實例,在抽象概括的過程中,發(fā)現(xiàn)研究對象的本質(zhì);從給定的大量信息材料中,概括出一些結(jié)論,并能應(yīng)用于解決問題或作出新的判斷.
(3)推理論證能力:推理是思維的基本形式之一,它由前提和結(jié)論兩部分組成,論證是由已有的正確的前提到被論證的結(jié)論正確的一連串的推理過程.推理既包括演繹推理,也包括合情推理.論證方法既包括按形式劃分的演繹法和歸納法,也包括按思考方法劃分的直接證法和間接證法.一般運用合情推理進行猜想,再運用演繹推理進行證明.
中學(xué)數(shù)學(xué)的推理論證能力是根據(jù)已知的事實和已獲得的正確數(shù)學(xué)命題來論證某一數(shù)學(xué)命題真實性初步的推理能力.
(4)運算求解能力:會根據(jù)法則、公式進行正確運算、變形和數(shù)據(jù)處理,能根據(jù)問題的條件,尋找與設(shè)計合理、簡捷的運算途徑;能根據(jù)要求對數(shù)據(jù)進行估計和近似計算.
運算求解能力是思維能力和運算技能的結(jié)合.運算包括對數(shù)字的計算、估值和近似計算,對式子的組合變形與分解變形,對幾何圖形各幾何量的計算求解等.運算能力包括分析運算條件、探究運算方向、選擇運算公式、確定運算程序等一系列過程中的思維能力,也包括在實施運算過程中遇到障礙而調(diào)整運算的能力.
(5)數(shù)據(jù)處理能力:會收集數(shù)據(jù)、整理數(shù)據(jù)、分析數(shù)據(jù),能從大量數(shù)據(jù)中抽取對研究問題有用的信息,并作出判斷.
數(shù)據(jù)處理能力主要依據(jù)統(tǒng)計或統(tǒng)計案例中的方法對數(shù)據(jù)進行整理、分析,并解決給定的實際問題.
(6)應(yīng)用意識:應(yīng)用指能綜合運用所學(xué)數(shù)學(xué)知識、思想和方法解決問題,包括解決在相關(guān)學(xué)科、生產(chǎn)、生活中簡單的數(shù)學(xué)問題;能理解對問題陳述的材料,并對所提供的信息資料進行歸納、整理和分類,將實際問題抽象為數(shù)學(xué)問題,建立數(shù)學(xué)模型;應(yīng)用相關(guān)的數(shù)學(xué)方法解決問題并加以驗證,并能用數(shù)學(xué)語言正確地表達和說明.主要過程是依據(jù)現(xiàn)實的生活背景,提煉相關(guān)的數(shù)量關(guān)系,構(gòu)造數(shù)學(xué)模型,將現(xiàn)實問題轉(zhuǎn)化為數(shù)學(xué)問題,并加以解決.
(7)創(chuàng)新意識:能發(fā)現(xiàn)問題、提出問題,綜合與靈活地應(yīng)用所學(xué)的數(shù)學(xué)知識、思想方法,選擇有效的方法和手段分析信息,進行獨立的思考、探索和研究,提出解決問題的思路,創(chuàng)造性地解決問題.
創(chuàng)新意識是理性思維的高層次表現(xiàn).對數(shù)學(xué)問題的“觀察、猜測、抽象、概括、證明”,是發(fā)現(xiàn)問題和解決問題的重要途徑,對數(shù)學(xué)知識的遷移、組合、融會的程度越高,顯示出的創(chuàng)新意識也就越強.
1.知識要求
知識是指《普通高中數(shù)學(xué)課程標(biāo)準(zhǔn)(實驗)》中所規(guī)定的必修課程、選修課程系列1和系列4中的數(shù)學(xué)概念、性質(zhì)、法則、公式、公理、定理以及由其內(nèi)容反映的數(shù)學(xué)思想方法,還包括按照一定程序與步驟進行運算,處理數(shù)據(jù)、繪制圖表等基本技能.
各部分知識整體要求及其定位參照《課程標(biāo)準(zhǔn)》相應(yīng)模塊的有關(guān)說明.
對知識的要求依次是了解、理解、掌握三個層次.
(1)了解:要求對所列知識的含義有初步的、感性的認(rèn)識,知道這一知識內(nèi)容是什么,按照一定的程序和步驟照樣模仿,并能(或會)在有關(guān)的問題中識別和認(rèn)識它.
這一層次所涉及的主要行為動詞有:了解,知道、識別,模仿,會求、會解等.
(2)理解:要求對所列知識內(nèi)容有較深刻的理性認(rèn)識,知道知識間的邏輯關(guān)系,能夠?qū)λ兄R作正確的描述說明,用數(shù)學(xué)語言表達,利用所學(xué)的知識內(nèi)容對有關(guān)問題作比較、判別、討論,有利用所學(xué)知識解決簡單問題的能力.
這一層次所涉及的主要行為動詞有:描述,說明,表達,推測、想像,比較、判別,初步應(yīng)用等.
(3)掌握:要求對所列的知識內(nèi)容能夠推導(dǎo)證明,利用所學(xué)知識對問題能夠進行分析、研究、討論,并且加以解決.
這一層次所涉及的主要行為動詞有:掌握、導(dǎo)出、分析,推導(dǎo)、證明,研究、討論、運用、解決問題等.
22.(本小題滿分12分)
已知,其中,
設(shè),.
(I) 寫出;
(II) 證明:對任意的,恒有.
[解析](I)由已知推得,從而有
(II) 證法1:當(dāng)時,
當(dāng)x>0時, ,所以在[0,1]上為增函數(shù)
因函數(shù)為偶函數(shù)所以在[-1,0]上為減函數(shù)
所以對任意的
因此結(jié)論成立.
證法2: 當(dāng)時,
當(dāng)x>0時, ,所以在[0,1]上為增函數(shù)
因函數(shù)為偶函數(shù)所以在[-1,0]上為減函數(shù)
所以對任意的
又因
所以
因此結(jié)論成立.
證法3: 當(dāng)時,
當(dāng)x>0時, ,所以在[0,1]上為增函數(shù)
因函數(shù)為偶函數(shù)所以在[-1,0]上為減函數(shù)
所以對任意的
由
對上式兩邊求導(dǎo)得
因此結(jié)論成立.
[點評]本小題考查導(dǎo)數(shù)的基本計算,函數(shù)的性質(zhì),絕對值不等式及組合數(shù)性質(zhì)等基礎(chǔ)知識,考查歸納推理能力以及綜合運用數(shù)學(xué)知識分析問題和解決問題的能力.
(17) (本小題滿分12分)
已知函數(shù),.求:
(I) 函數(shù)的最大值及取得最大值的自變量的集合;
(II) 函數(shù)的單調(diào)增區(qū)間.
[解析](I) 解法一:
當(dāng),即時, 取得最大值.
函數(shù)的取得最大值的自變量的集合為.
解法二:
當(dāng),即時, 取得最大值.
函數(shù)的取得最大值的自變量的集合為.
(II)解:
由題意得:
即:
因此函數(shù)的單調(diào)增區(qū)間為.
[點評]本小題考查三角公式,三角函數(shù)的性質(zhì)及已知三角函數(shù)值求角等基礎(chǔ)知識,考查綜合運用三角有關(guān)知識的能力.
(18) (本小題滿分12分)]
已知正方形.、分別是、的中點,將沿折起,如圖所示,記二面角的大小為.
(I) 證明平面;
(II)若為正三角形,試判斷點在平面內(nèi)的射影是否在直線上,證明你的結(jié)論,并求角的余弦值.
[解析](I)證明:EF分別為正方形ABCD得邊AB、CD的中點,
EB//FD,且EB=FD,
四邊形EBFD為平行四邊形.
BF//ED
平面.
(II)解法1:
如右圖,點A在平面BCDE內(nèi)的射影G在直線EF上,
過點A作AG垂直于平面BCDE,垂足為G,連結(jié)GC,GD.
ACD為正三角形,
AC=AD
CG=GD
G在CD的垂直平分線上,
點A在平面BCDE內(nèi)的射影G在直線EF上,
過G作GH垂直于ED于H,連結(jié)AH,則,所以為二面角A-DE-C的平面角.即
設(shè)原正方體的邊長為2a,連結(jié)AF
在折后圖的AEF中,AF=,EF=2AE=2a,
即AEF為直角三角形,
在RtADE中,
.
解法2:點A在平面BCDE內(nèi)的射影G在直線EF上
連結(jié)AF,在平面AEF內(nèi)過點作,垂足為.
ACD為正三角形,F為CD的中點,
又因,
所以
又且
為A在平面BCDE內(nèi)的射影G.
即點A在平面BCDE內(nèi)的射影在直線EF上
過G作GH垂直于ED于H,連結(jié)AH,則,所以為二面角A-DE-C的平面角.即
設(shè)原正方體的邊長為2a,連結(jié)AF
在折后圖的AEF中,AF=,EF=2AE=2a,
即AEF為直角三角形,
在RtADE中,
.
解法3: 點A在平面BCDE內(nèi)的射影G在直線EF上
連結(jié)AF,在平面AEF內(nèi)過點作,垂足為.
ACD為正三角形,F為CD的中點,
又因,
所以
又
為A在平面BCDE內(nèi)的射影G.
即點A在平面BCDE內(nèi)的射影在直線EF上
過G作GH垂直于ED于H,連結(jié)AH,則,所以為二面角A-DE-C的平面角.即
設(shè)原正方體的邊長為2a,連結(jié)AF
在折后圖的AEF中,AF=,EF=2AE=2a,
即AEF為直角三角形,
在RtADE中,
,
.
[點評]本小題考查空間中的線面關(guān)系,解三角形等基礎(chǔ)知識考查空間想象能力和思維能力.
(19) (本小題滿分12分)
現(xiàn)有甲、乙兩個項目,對甲項目每投資十萬元,一年后利潤是1.2萬元、1.18萬元、1.17萬元的概率分別為、、;已知乙項目的利潤與產(chǎn)品價格的調(diào)整有關(guān),在每次調(diào)整中價格下降的概率都是,設(shè)乙項目產(chǎn)品價格在一年內(nèi)進行2次獨立的調(diào)整,記乙項目產(chǎn)品價格在一年內(nèi)的下降次數(shù)為,對乙項目每投資十萬元, 取0、1、2時, 一年后相應(yīng)利潤是1.3萬元、1.25萬元、0.2萬元.隨機變量、分別表示對甲、乙兩項目各投資十萬元一年后的利潤.
(I) 求、的概率分布和數(shù)學(xué)期望、;
(II) 當(dāng)時,求的取值范圍.
[解析]
(I)解法1: 的概率分布為
|
1.2 |
1.18 |
1.17 |
P |
|
|
|
E=1.2+1.18+1.17=1.18.
由題設(shè)得,則的概率分布為
|
0 |
1 |
2 |
P |
|
|
|
故的概率分布為
|
1.3 |
1.25 |
0.2 |
P |
|
|
|
所以的數(shù)學(xué)期望為
E=++=.
解法2: 的概率分布為
|
1.2 |
1.18 |
1.17 |
P |
|
|
|
E=1.2+1.18+1.17=1.18.
設(shè)表示事件”第i次調(diào)整,價格下降”(i=1,2),則
P(=0)= ;
P(=1)=;
P(=2)=
故的概率分布為
|
1.3 |
1.25 |
0.2 |
P |
|
|
|
所以的數(shù)學(xué)期望為
E=++=.
(II) 由,得:
因0<p<1,所以時,p的取值范圍是0<p<0.3.
[點評]本小題考查二項分布、分布列、數(shù)學(xué)期望、方差等基礎(chǔ)知識,考查同學(xué)們運用概率知識解決實際問題的能力.
(20) (本小題滿分14分)
已知點,是拋物線上的兩個動點,是坐標(biāo)原點,向量,滿足.設(shè)圓的方程為
(I) 證明線段是圓的直徑;
(II)當(dāng)圓C的圓心到直線X-2Y=0的距離的最小值為時,求p的值。
[解析](I)證明1:
整理得:
設(shè)M(x,y)是以線段AB為直徑的圓上的任意一點,則
即
整理得:
故線段是圓的直徑
證明2:
整理得:
……..(1)
設(shè)(x,y)是以線段AB為直徑的圓上則
即
去分母得:
點滿足上方程,展開并將(1)代入得:
故線段是圓的直徑
證明3:
整理得:
……(1)
以線段AB為直徑的圓的方程為
展開并將(1)代入得:
故線段是圓的直徑
(II)解法1:設(shè)圓C的圓心為C(x,y),則
又因
所以圓心的軌跡方程為
設(shè)圓心C到直線x-2y=0的距離為d,則
當(dāng)y=p時,d有最小值,由題設(shè)得
.
解法2: 設(shè)圓C的圓心為C(x,y),則
又因
所以圓心的軌跡方程為
設(shè)直線x-2y+m=0到直線x-2y=0的距離為,則
因為x-2y+2=0與無公共點,
所以當(dāng)x-2y-2=0與僅有一個公共點時,該點到直線x-2y=0的距離最小值為
將(2)代入(3)得
解法3: 設(shè)圓C的圓心為C(x,y),則
圓心C到直線x-2y=0的距離為d,則
又因
當(dāng)時,d有最小值,由題設(shè)得
.
[點評]本小題考查了平面向量的基本運算,圓與拋物線的方程.點到直線的距離公式等基礎(chǔ)知識,以及綜合運用解析幾何知識解決問題的能力.
21.(本小題滿分12分)
已知函數(shù)f(x)=,其中a , b , c是以d為公差的等差數(shù)列,,且a>0,d>0.設(shè)[1-]上,,在,將點A, B, C
(I)求
(II)若⊿ABC有一邊平行于x軸,且面積為,求a ,d的值
[解析](I)解:
令,得
當(dāng)時, ;
當(dāng)時,
所以f(x)在x=-1處取得最小值即
(II)
的圖像的開口向上,對稱軸方程為
由知
在上的最大值為
即
又由
當(dāng)時, 取得最小值為
由三角形ABC有一條邊平行于x軸知AC平行于x軸,所以
又由三角形ABC的面積為得
利用b=a+d,c=a+2d,得
聯(lián)立(1)(2)可得.
解法2:
又c>0知在上的最大值為
即:
又由
當(dāng)時, 取得最小值為
由三角形ABC有一條邊平行于x軸知AC平行于x軸,所以
又由三角形ABC的面積為得
利用b=a+d,c=a+2d,得
聯(lián)立(1)(2)可得
[點評]本小題考查了函數(shù)的導(dǎo)數(shù),函數(shù)的極值的判定,閉區(qū)間上二次函數(shù)的最值,等差數(shù)基礎(chǔ)知識的綜合應(yīng)用,考查了應(yīng)用數(shù)形結(jié)合的數(shù)學(xué)思想分析問題解決問題的能力
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com