(Ⅰ)若∠PAT=θ.試寫出四邊形RPQC的面積S關于θ 的函數(shù)表達式.并寫出定義域, (Ⅱ)試求停車場的面積最大值. 查看更多

 

題目列表(包括答案和解析)

如圖,四邊形ABCD是一個邊長為100米的正方形地皮,其中ATPS是一半徑為90米的扇形小山,其余部分都是平地,P是弧TS上一點,現(xiàn)有一位開發(fā)商想在平 地上建造一個兩邊落在BC與CD上的長方形停車場PQCR.

 
    

(Ⅰ)若∠PAT=θ,試寫出四邊形RPQC的面積S關于θ

          的函數(shù)表達式,并寫出定義域;

      (Ⅱ)試求停車場的面積最大值。

查看答案和解析>>

如圖,四邊形ABCD是一個邊長為100米的正方形地皮,其中ATPS是一半徑為90米的扇形小山,其余部分都是平地,P是弧TS上一點,現(xiàn)有一位開發(fā)商想在平地上建造一個兩邊落在BC與CD上的長方形停車場PQCR.


 
    

 
(Ⅰ)若∠PAT=θ,試寫出四邊形RPQC的面積S關于θ
的函數(shù)表達式,并寫出定義域;
(Ⅱ)試求停車場的面積最大值。

查看答案和解析>>

如圖,四邊形ABCD是一個邊長為100米的正方形地皮,其中ATPS是一半徑為90米的扇形小山,其余部分都是平地,P是弧TS上一點,現(xiàn)有一位開發(fā)商想在平地上建造一個兩邊落在BC與CD上的長方形停車場PQCR.
(1)若∠PAT=θ,試寫出四邊形RPQC的面積S關于θ的函數(shù)表達式,并寫出定義域;
(2)試求停車場的面積最大值.

查看答案和解析>>

如圖,四邊形ABCD是一個邊長為100米的正方形地皮,其中ATPS是一半徑為90米的扇形小山,其余部分都是平地,P是弧TS上一點,現(xiàn)有一位開發(fā)商想在平地上建造一個兩邊落在BC與CD上的長方形停車場PQCR.
(1)若∠PAT=θ,試寫出四邊形RPQC的面積S關于θ的函數(shù)表達式,并寫出定義域;
(2)試求停車場的面積最大值.

查看答案和解析>>

一、選擇題

2,4,6

2,4,6

2.C  解析:由 不符合集合元素的互異性,故選C。

3.D  解析:

4.A  解析:由題可知,故選A.

5.C  解析:令公比為q,由a1=3,前三項的和為21可得q2+q-6=0,各項都為正數(shù),所以q=2,所以,故選C.

6.D 解析:上恒成立,即恒成立,故選D.

7.B  解析:因為定義在R上函數(shù)是偶函數(shù),所以,故函數(shù)以4為周期,所以

8.C 解析:關于y軸的對稱圖形,可得

圖象,再向右平移一個單位,即可得的圖象,即的圖

象,故選C.

9.B  解析:可采取特例法,例皆為滿足條件的函數(shù),一一驗證可知選B.

10.A  解析:故在[-2,2]上最大值為,所以最小值為,故選A.

二、填空題:

11.答案:6   解析:∵     ∴a7+a­11=6.

12.答案A=120°  解析:

13.答案:28  解析:由前面圖形規(guī)律知,第6個圖中小正方形的數(shù)量為1+2+3+…+7=28。

三、解答題:

15.解:(Ⅰ),,  令

3m=1    ∴    ∴

∴{an+}是以為首項,4為公比的等比數(shù)列

(Ⅱ)      

    

16.解:(Ⅰ)

時,的最小值為3-4

(Ⅱ)∵    ∴

時,單調(diào)減區(qū)間為

17.解:(Ⅰ)的定義域關于原點對稱

為奇函數(shù),則  ∴a=0

(Ⅱ)

∴在

上單調(diào)遞增

上恒大于0只要大于0即可

上恒大于0,a的取值范圍為

18.解:(Ⅰ)延長RP交AB于M,設∠PAB=,則

AM =90

       =10000-

 

      1. <ruby id="vhu4q"></ruby>

        <nobr id="vhu4q"></nobr>
        <ruby id="vhu4q"></ruby>
        <u id="vhu4q"></u>
      2. <thead id="vhu4q"></thead>

            

        ∴當時,SPQCR有最大值

        答:長方形停車場PQCR面積的最磊值為平方米。

        19.解:(Ⅰ)【方法一】由,

        依題設可知,△=(b+1)24c=0.

        .

        【方法二】依題設可知

        為切點橫坐標,

        于是,化簡得

        同法一得

        (Ⅱ)由

        可得

        依題設欲使函數(shù)內(nèi)有極值點,

        則須滿足

        亦即 ,

        故存在常數(shù),使得函數(shù)內(nèi)有極值點.

        (注:若,則應扣1分. )

        20.解:(Ⅰ)設函數(shù)

           (Ⅱ)由(Ⅰ)可知

        可知使恒成立的常數(shù)k=8.

        (Ⅲ)由(Ⅱ)知 

        可知數(shù)列為首項,8為公比的等比數(shù)列

        即以為首項,8為公比的等比數(shù)列. 則 

        .

         


        同步練習冊答案