19. 查看更多

 

題目列表(包括答案和解析)

(本小題滿分14分)

已知函數

(1)證明:

(2)若數列的通項公式為,求數列 的前項和;w.w.w.k.s.5.u.c.o.m    

(3)設數列滿足:,設

若(2)中的滿足對任意不小于2的正整數,恒成立,

試求的最大值。

查看答案和解析>>

(本小題滿分14分)已知,點軸上,點軸的正半軸,點在直線上,且滿足,. w.w.w.k.s.5.u.c.o.m    

(Ⅰ)當點軸上移動時,求動點的軌跡方程;

(Ⅱ)過的直線與軌跡交于、兩點,又過、作軌跡的切線、,當,求直線的方程.

查看答案和解析>>

(本小題滿分14分)設函數

 (1)求函數的單調區(qū)間;

 (2)若當時,不等式恒成立,求實數的取值范圍;w.w.w.k.s.5.u.c.o.m    

 (3)若關于的方程在區(qū)間上恰好有兩個相異的實根,求實數的取值范圍。

查看答案和解析>>

(本小題滿分14分)

已知,其中是自然常數,

(1)討論時, 的單調性、極值;w.w.w.k.s.5.u.c.o.m    

(2)求證:在(1)的條件下,;

(3)是否存在實數,使的最小值是3,若存在,求出的值;若不存在,說明理由.

查看答案和解析>>

(本小題滿分14分)

設數列的前項和為,對任意的正整數,都有成立,記。

(I)求數列的通項公式;

(II)記,設數列的前項和為,求證:對任意正整數都有

(III)設數列的前項和為。已知正實數滿足:對任意正整數恒成立,求的最小值。

查看答案和解析>>

一、選擇題

2,4,6

2,4,6

2.C  解析:由 不符合集合元素的互異性,故選C。

3.D  解析:

4.A  解析:由題可知,故選A.

5.C  解析:令公比為q,由a1=3,前三項的和為21可得q2+q-6=0,各項都為正數,所以q=2,所以,故選C.

6.D 解析:上恒成立,即恒成立,故選D.

7.B  解析:因為定義在R上函數是偶函數,所以,故函數以4為周期,所以

8.C 解析:關于y軸的對稱圖形,可得

圖象,再向右平移一個單位,即可得的圖象,即的圖

象,故選C.

9.B  解析:可采取特例法,例皆為滿足條件的函數,一一驗證可知選B.

10.A  解析:故在[-2,2]上最大值為,所以最小值為,故選A.

二、填空題:

11.答案:6   解析:∵     ∴a7+a­11=6.

12.答案A=120°  解析:

13.答案:28  解析:由前面圖形規(guī)律知,第6個圖中小正方形的數量為1+2+3+…+7=28。

三、解答題:

15.解:(Ⅰ),,  令

3m=1    ∴    ∴

∴{an+}是以為首項,4為公比的等比數列

(Ⅱ)      

    

16.解:(Ⅰ)

時,的最小值為3-4

(Ⅱ)∵    ∴

時,單調減區(qū)間為

17.解:(Ⅰ)的定義域關于原點對稱

為奇函數,則  ∴a=0

(Ⅱ)

∴在

上單調遞增

上恒大于0只要大于0即可

上恒大于0,a的取值范圍為

18.解:(Ⅰ)延長RP交AB于M,設∠PAB=,則

AM =90

       =10000-

 

        

    ∴當時,SPQCR有最大值

    答:長方形停車場PQCR面積的最磊值為平方米。

    19.解:(Ⅰ)【方法一】由,

    依題設可知,△=(b+1)24c=0.

    .

    【方法二】依題設可知

    為切點橫坐標,

    于是,化簡得

    同法一得

    (Ⅱ)由

    可得

    依題設欲使函數內有極值點,

    則須滿足

    亦即 ,

    故存在常數,使得函數內有極值點.

    (注:若,則應扣1分. )

    20.解:(Ⅰ)設函數

       (Ⅱ)由(Ⅰ)可知

    可知使恒成立的常數k=8.

    (Ⅲ)由(Ⅱ)知 

    可知數列為首項,8為公比的等比數列

    即以為首項,8為公比的等比數列. 則 

    .

     


    同步練習冊答案