題目列表(包括答案和解析)
已知定點,動點B是圓F:(F為圓心)上一點,線段AB的垂直平分線交BF與P。
(Ⅰ)求動點P的軌跡方程;
(Ⅱ)直線交P點的軌跡于M、N兩點,若P點的軌跡上存在點C,使
,求實數(shù)m的值;
(Ⅲ)是否存在過點的直線l交P點的軌跡于點R、T,且滿足(O為原點)?若存在,求直線l的方程,若不存在,請說明理由。
定長為3的線段兩端點分別在軸,軸上滑動,在線段上,且
(1)求點的軌跡的方程.
(2)設(shè)過且不垂直于坐標(biāo)軸的直線交軌跡與兩點.問:線段上是否存在一點,使得以為鄰邊的平行四邊形為菱形?作出判斷并證明.
如圖1,拋物線y=ax2+bx+c(a≠0)的頂點為(1,4),交x軸于A、B,交y軸于D,其中B點的坐標(biāo)為(3,0)
(1)求拋物線的解析式
(2)如圖2,過點A的直線與拋物線交于點E,交y軸于點F,其中E點的橫坐標(biāo)為2,若直線PQ為拋物線的對稱軸,點G為PQ上一動點,則軸上是否存在一點H,使D、G、F、H四點圍成的四邊形周長最小.若存在,求出這個最小值及G、H的坐標(biāo);若不存在,請說明理由.
(3)如圖3,拋物線上是否存在一點,過點作軸的垂線,垂足為,過點作直線,交線段于點,連接,使~,若存在,求出點的坐標(biāo);若不存在,說明理由.
圖1 圖2 圖3
已知點和拋物線的焦點關(guān)于軸對稱,點是以點為圓心,4為半徑的上任意一點,線段的垂直平分線與線段交于點,設(shè)點的軌跡為曲線,
求拋物線和曲線的方程;
是否存在直線,使得直線分別與拋物線及曲線均只有一個公共點,若存在,求出所有這樣的直線的方程,若不存在,請說明理由.
一、選擇題:本題考查基本知識和基本運算,每小題5分。共60分。
CBDDD ABDAB DA
二、填空題:本題考查基本知識和基本運算,每小題4分,共16分。
(13) (14) ―192 (15) (16) ①③④
三、解答題:本大題共6小題,共74分。
(17)(本小題滿分12分)
解:(Ⅰ)…………………………………………1分
依題意 …………………………………………2分
又
…………………………………………4分
…………………………………………5分
令 x=0,得 ………………………7分
所以, 函數(shù)的解析式為 ……………………………8分
(還有其它的正確形式,如:等)
(Ⅱ)當(dāng),時單增 ……10分
即, …………………………………………11分
∴的增區(qū)間是 ………………………………………12分
(注意其它正確形式,如:區(qū)間左右兩端取開、閉,等)
(18)(本小題滿分12分)
解:(Ⅰ)設(shè)等差數(shù)列的公差為,等比數(shù)列的公比為,
由題設(shè)知,∴,∴
則,∴………………………………3分
∴
又∵,
∴,
又,∴,
∴,又
∴,
∴………………………………………………………6分
(Ⅱ) ,……………………………………7分
∴
①
②……………………………9分
①一②得
∴………………………………………………………12分
(19)(本小題滿分12分)
解:(1)設(shè),∵幾何體的體積為,
∴, ………………………3分
即,
即,解得.
∴的長為4. ……………………………6分
(2)在線段上存在點,使直線與垂直.
以下給出兩種證明方法:
方法1:過點作的垂線交于點,過點作
交于點.
∵,,,
∴平面.
∵平面,∴.
∵,∴平面.
∵平面,∴.
在矩形中,∵∽,
∴,即,∴.
∵∽,∴,即,∴.………………………9分
在中,∵,∴.
由余弦定理,得
.………………………11分
∴在線段上存在點,使直線與垂直,且線段的長為. ………………………12分
方法2:以點為坐標(biāo)原點,分別以,,所在的直線為軸,軸,軸建立如圖的空間直角坐標(biāo)系,由已知條件與(1)可知,,,, ………………………7分
假設(shè)在線段上存在點≤≤2,,0≤≤
由∽,得,
∴.
∴.
∴,.
∵,∴,
即,∴. ……………………9分
此時點的坐標(biāo)為,在線段上.
∵,∴.……………11分
∴在線段上存在點,使直線與垂直,且線段的長為. ……………………12分
(20)(本小題滿分12分)
解:(Ⅰ)的所有可能值為0,1,2,3,4.…………………………1分
,
,
,
. ……………………4分
其分布列為:
0
1
2
3
4
…………………………6分
(Ⅱ),
. …………………………8分
由題意可知
, …………………………10分
元. …………………………12分
(21)(本小題滿分12分)
解:(Ⅰ)因為,所以有
所以為直角三角形;…………………………2分
則有
所以,…………………………3分
又,………………………4分
在中有
即,解得
所求橢圓方程為…………………………6分
(Ⅱ)
從而將求的最大值轉(zhuǎn)化為求的最大值…………………………8分
是橢圓上的任一點,設(shè),則有即
又,所以………………………10分
而,所以當(dāng)時,取最大值
故的最大值為…………………………12分
(22)(本小題滿分14分)
(1)解法1:∵,其定義域為,
∴. ……………………1分
∵是函數(shù)的極值點,∴,即.
∵,∴.
經(jīng)檢驗當(dāng)時,是函數(shù)的極值點,
∴. ……………………5分
解法2:∵,其定義域為,
∴. ……………………1分
令,即,整理,得.
∵,
∴的兩個實根(舍去),,……………………3分
當(dāng)變化時,,的變化情況如下表:
―
0
+
極小值
依題意,,即,……………………5分
∵,∴.
(2)解:對任意的都有≥成立等價于對任意的
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com