21. 查看更多

 

題目列表(包括答案和解析)

(本小題滿分14分)

已知函數(shù)。

(1)證明:

(2)若數(shù)列的通項公式為,求數(shù)列 的前項和;w.w.w.k.s.5.u.c.o.m    

(3)設(shè)數(shù)列滿足:,設(shè),

若(2)中的滿足對任意不小于2的正整數(shù)恒成立,

試求的最大值。

查看答案和解析>>

(本小題滿分14分)已知,點軸上,點軸的正半軸,點在直線上,且滿足,. w.w.w.k.s.5.u.c.o.m    

(Ⅰ)當點軸上移動時,求動點的軌跡方程;

(Ⅱ)過的直線與軌跡交于、兩點,又過作軌跡的切線、,當,求直線的方程.

查看答案和解析>>

(本小題滿分14分)設(shè)函數(shù)

 (1)求函數(shù)的單調(diào)區(qū)間;

 (2)若當時,不等式恒成立,求實數(shù)的取值范圍;w.w.w.k.s.5.u.c.o.m    

 (3)若關(guān)于的方程在區(qū)間上恰好有兩個相異的實根,求實數(shù)的取值范圍。

查看答案和解析>>

(本小題滿分14分)

已知,其中是自然常數(shù),

(1)討論時, 的單調(diào)性、極值;w.w.w.k.s.5.u.c.o.m    

(2)求證:在(1)的條件下,;

(3)是否存在實數(shù),使的最小值是3,若存在,求出的值;若不存在,說明理由.

查看答案和解析>>

(本小題滿分14分)

設(shè)數(shù)列的前項和為,對任意的正整數(shù),都有成立,記。

(I)求數(shù)列的通項公式;

(II)記,設(shè)數(shù)列的前項和為,求證:對任意正整數(shù)都有;

(III)設(shè)數(shù)列的前項和為。已知正實數(shù)滿足:對任意正整數(shù)恒成立,求的最小值。

查看答案和解析>>

一.選擇題:CBBA  CAAA

二.填空題:9、;  10、 ;  11、;12、; 

13、; 14、;  15、

三.解答題:

16.解:(I)tanC=tan[π-(A+B)]=-tan(A+B)

            ∵, ∴       ……………………5分

(II)∵0<tanB<tanA,∴A、B均為銳角, 則B<A,又C為鈍角,

∴最短邊為b ,最長邊長為c……………………7分

,解得       ……………………9分

    ,∴       ………………12分

17.解:(I)“油罐被引爆”的事件為事件A,其對立事件為,則P()=C…………4分

P(A)=1-         答:油罐被引爆的概率為…………6分

(II)射擊次數(shù)ξ的可能取值為2,3,4,5,    …………7分

       P(ξ=2)=,   P(ξ=3)=C     ,

P(ξ=4)=C, P(ξ=5)=C …………10分

ξ

2

3

4

5

        故ξ的分布列為:

                                                                                         

 

Eξ=2×+3×+4×+5×=   …………12分

18.解(Ⅰ)當n = 1時,解出a1 = 3 , …………1分

4sn = an2 + 2an3                             ①

        當時    4sn1 =  + 2an-13                             ②  

            ①-②  , 即…………3分

,)…………5分

是以3為首項,2為公差的等差數(shù)列   …………7分

(Ⅱ)                               ③

              ④    …………9 分

④-③       …………11分

                   …………13分

                                 …………14分

19. 解:(I)由題意得(100-x)?3000?(1+2x%)≥100×3000,

即x2-50x≤0,解得0≤x≤50,                        ……………………4分

又∵x>0   ∴0<x≤50;                            ……………………6分

(II)設(shè)這100萬農(nóng)民的人均年收入為y元,

則y=  =

=-[x-25(a+1)]2+3000+475(a+1)2     (0<x≤50)    ………………9分

(i)當0<25(a+1)≤50,即0<a≤1,當x=25(a+1)時,y最大; ………………11分

(ii)當25(a+1)>50,即a >1,函數(shù)y在(0,50]單調(diào)遞增,∴當x=50時,y取最大值!13分                          

答:在0<a≤1時,安排25(a +1)萬人進入企業(yè)工作,在a>1時安排50萬人進入企業(yè)工作,才能使這100萬人的人均年收入最大             ………………14分

20.解證:(I)易得…………………………………………1分

的兩個極值點,的兩個實根,又>0

……………………………………………………3分

,

            ……………………………………………7分

(Ⅱ)設(shè)

   ………………10分

上單調(diào)遞增;在上單調(diào)遞減………………12 分

時,取得極大值也是最大值

,………………………………………14分

22.(本小題滿分14分)

解:(I)由圖形可知二次函數(shù)的圖象過點(0,0),(8,0),并且f(x)的最大值為16

,

∴函數(shù)f(x)的解析式為…………………………4分

(Ⅱ)由

∵0≤t≤2,∴直線l1與f(x)的圖象的交點坐標為(…………………………6分

由定積分的幾何意義知:

………………………………9分

(Ⅲ)令

因為x>0,要使函數(shù)f(x)與函數(shù)g(x)有且僅有2個不同的交點,則函數(shù)

的圖象與x軸的正半軸有且只有兩個不同的交點

∴x=1或x=3時,

當x∈(0,1)時,是增函數(shù);

當x∈(1,3)時,是減函數(shù)

當x∈(3,+∞)時,是增函數(shù)

……………12分

又因為當x→0時,;當

所以要使有且僅有兩個不同的正根,必須且只須

, ∴m=7或

∴當m=7或時,函數(shù)f(x)與g(x)的圖象有且只有兩個不同交點。…………14分

 


同步練習冊答案