(ii)時(shí).不妨設(shè).則.于是 查看更多

 

題目列表(包括答案和解析)

已知函數(shù)f(x)=
ax
x2+b
,在x=1處取得極值2.
(1)求函數(shù)f(x)的解析式
(2)m滿(mǎn)足什么條件時(shí),區(qū)間(m,2m+1)為函數(shù)f(x)的單調(diào)增區(qū)間;
(3)若P(x0,y0)為f(x)=
ax
x2+b
圖象上任意一點(diǎn),直線(xiàn)/與.f(x)的圖象切于P點(diǎn),不妨設(shè)直線(xiàn)l的斜率為對(duì)于任意的x0∈R和對(duì)于任意的t∈[4,5],均有k≥c(t2-2t-3)恒成立,求實(shí)數(shù)c的取值范圍.

查看答案和解析>>

精英家教網(wǎng)已知四棱錐P-ABCD的三視圖如右圖,該棱錐中,PA=AB=1,PD與平面ABCD所成角是30°,點(diǎn)F是PB的中點(diǎn),點(diǎn)E在棱BC上移動(dòng).
(I)畫(huà)出該棱錐的直觀(guān)圖并證明:無(wú)論點(diǎn)E在棱BC的何處,總有PE⊥AF;
(II)連接DE,設(shè)G為DE上一動(dòng)點(diǎn),當(dāng)三棱錐P-AGE的體積為
3
12
時(shí),試確定G在DE上的位置.

查看答案和解析>>

已知函數(shù)的圖象過(guò)坐標(biāo)原點(diǎn)O,且在點(diǎn)處的切線(xiàn)的斜率是.

(Ⅰ)求實(shí)數(shù)的值; 

(Ⅱ)求在區(qū)間上的最大值;

(Ⅲ)對(duì)任意給定的正實(shí)數(shù),曲線(xiàn)上是否存在兩點(diǎn)P、Q,使得是以O(shè)為直角頂點(diǎn)的直角三角形,且此三角形斜邊中點(diǎn)在軸上?說(shuō)明理由.

【解析】第一問(wèn)當(dāng)時(shí),,則。

依題意得:,即    解得

第二問(wèn)當(dāng)時(shí),,令,結(jié)合導(dǎo)數(shù)和函數(shù)之間的關(guān)系得到單調(diào)性的判定,得到極值和最值

第三問(wèn)假設(shè)曲線(xiàn)上存在兩點(diǎn)P、Q滿(mǎn)足題設(shè)要求,則點(diǎn)P、Q只能在軸兩側(cè)。

不妨設(shè),則,顯然

是以O(shè)為直角頂點(diǎn)的直角三角形,∴

    (*)若方程(*)有解,存在滿(mǎn)足題設(shè)要求的兩點(diǎn)P、Q;

若方程(*)無(wú)解,不存在滿(mǎn)足題設(shè)要求的兩點(diǎn)P、Q.

(Ⅰ)當(dāng)時(shí),,則。

依題意得:,即    解得

(Ⅱ)由(Ⅰ)知,

①當(dāng)時(shí),,令

當(dāng)變化時(shí),的變化情況如下表:

0

0

+

0

單調(diào)遞減

極小值

單調(diào)遞增

極大值

單調(diào)遞減

,,!上的最大值為2.

②當(dāng)時(shí), .當(dāng)時(shí), ,最大值為0;

當(dāng)時(shí), 上單調(diào)遞增!最大值為

綜上,當(dāng)時(shí),即時(shí),在區(qū)間上的最大值為2;

當(dāng)時(shí),即時(shí),在區(qū)間上的最大值為。

(Ⅲ)假設(shè)曲線(xiàn)上存在兩點(diǎn)P、Q滿(mǎn)足題設(shè)要求,則點(diǎn)P、Q只能在軸兩側(cè)。

不妨設(shè),則,顯然

是以O(shè)為直角頂點(diǎn)的直角三角形,∴

    (*)若方程(*)有解,存在滿(mǎn)足題設(shè)要求的兩點(diǎn)P、Q;

若方程(*)無(wú)解,不存在滿(mǎn)足題設(shè)要求的兩點(diǎn)P、Q.

,則代入(*)式得:

,而此方程無(wú)解,因此。此時(shí),

代入(*)式得:    即   (**)

 ,則

上單調(diào)遞增,  ∵     ∴,∴的取值范圍是

∴對(duì)于,方程(**)總有解,即方程(*)總有解。

因此,對(duì)任意給定的正實(shí)數(shù),曲線(xiàn)上存在兩點(diǎn)P、Q,使得是以O(shè)為直角頂點(diǎn)的直角三角形,且此三角形斜邊中點(diǎn)在軸上

 

查看答案和解析>>

已知二次函數(shù)的圖像經(jīng)過(guò)坐標(biāo)原點(diǎn),且滿(mǎn)足,設(shè)函數(shù),其中為非零常數(shù)

(I)求函數(shù)的解析式;

(II)當(dāng) 時(shí),判斷函數(shù)的單調(diào)性并且說(shuō)明理由;

 (III)證明:對(duì)任意的正整數(shù),不等式恒成立

查看答案和解析>>

已知函數(shù)f(x)=,在x=1處取得極值2.
(1)求函數(shù)f(x)的解析式
(2)m滿(mǎn)足什么條件時(shí),區(qū)間(m,2m+1)為函數(shù)f(x)的單調(diào)增區(qū)間;
(3)若P(x,y)為f(x)=圖象上任意一點(diǎn),直線(xiàn)/與.f(x)的圖象切于P點(diǎn),不妨設(shè)直線(xiàn)l的斜率為對(duì)于任意的x∈R和對(duì)于任意的t∈[4,5],均有k≥c(t2-2t-3)恒成立,求實(shí)數(shù)c的取值范圍.

查看答案和解析>>


同步練習(xí)冊(cè)答案