解析:(1)依題意有.則.將點代入得. 查看更多

 

題目列表(包括答案和解析)

一自來水廠用蓄水池通過管道向所管轄區(qū)域供水.某日凌晨,已知蓄水池有水9千噸,水廠計劃在當日每小時向蓄水池注入水2千噸,且每小時通過管道向所管轄區(qū)域供水千噸.

(1)多少小時后,蓄水池存水量最少?

(2)當蓄水池存水量少于3千噸時,供水就會出現(xiàn)緊張現(xiàn)象,那么當日出現(xiàn)這種情況的時間有多長?

【解析】第一問中(1)設小時后,蓄水池有水千噸.依題意,,即(小時)時,蓄水池的水量最少,只有1千噸

第二問依題意,   解得:

解:(1)設小時后,蓄水池有水千噸.………………………………………1分

依題意,…………………………………………4分

,即(小時)時,蓄水池的水量最少,只有1千噸. ………2分

(2)依題意,   ………………………………………………3分

解得:.  …………………………………………………………………3分

所以,當天有8小時會出現(xiàn)供水緊張的情況

 

查看答案和解析>>

如圖,,,…,,…是曲線上的點,,,…,,…是軸正半軸上的點,且,…,,… 均為斜邊在軸上的等腰直角三角形(為坐標原點).

(1)寫出、之間的等量關系,以及、之間的等量關系;

(2)求證:);

(3)設,對所有,恒成立,求實數(shù)的取值范圍.

【解析】第一問利用有得到

第二問證明:①當時,可求得,命題成立;②假設當時,命題成立,即有則當時,由歸納假設及,

第三問 

.………………………2分

因為函數(shù)在區(qū)間上單調遞增,所以當時,最大為,即

解:(1)依題意,有,,………………4分

(2)證明:①當時,可求得,命題成立; ……………2分

②假設當時,命題成立,即有,……………………1分

則當時,由歸納假設及

解得不合題意,舍去)

即當時,命題成立.  …………………………………………4分

綜上所述,對所有.    ……………………………1分

(3) 

.………………………2分

因為函數(shù)在區(qū)間上單調遞增,所以當時,最大為,即

.……………2分

由題意,有. 所以,

 

查看答案和解析>>

已知數(shù)列的前項的和為,是等比數(shù)列,且,

⑴求數(shù)列的通項公式;

⑵設,求數(shù)列的前項的和。

⑴   ,數(shù)列的前項的和為,求證:

【解析】第一問利用數(shù)列

依題意有:當n=1時,;

時,

第二問中,利用由得:,然后借助于錯位相減法

第三問中

結合均值不等式放縮得到證明。

 

查看答案和解析>>

中,已知 ,面積,

(1)求的三邊的長;

(2)設(含邊界)內的一點,到三邊的距離分別是

①寫出所滿足的等量關系;

②利用線性規(guī)劃相關知識求出的取值范圍.

【解析】第一問中利用設中角所對邊分別為

    

又由 

又由 

       又

的三邊長

第二問中,①

依題意有

作圖,然后結合區(qū)域得到最值。

 

查看答案和解析>>

某村計劃建造一個室內面積為的矩形蔬菜溫室。在溫室內,沿左、右兩側與后側內墻各保留寬的通道,沿前側內墻保留寬的空地,當矩形溫室的邊長各為多少時,蔬菜的種植面積最大?最大種植面積是多少?

【解析】本試題考查了實際生活中的最值問題的運用,首先確定設矩形溫室的長為xm,則寬為800/xm。

依題意有:種植面積:

運用導數(shù)的思想得到最值。

設矩形溫室的長為xm,則寬為800/xm。

依題意有:種植面積:

                 

答:當矩形溫室的長為20m,寬為40m時種植面積最大,最大種植面積是m2

 

查看答案和解析>>


同步練習冊答案