解法二 (1)令.由題意.得 查看更多

 

題目列表(包括答案和解析)

閱讀下面的文言文,完成下面5題。

李斯論  (清)姚鼐

蘇子瞻謂李斯以荀卿之學(xué)亂天下,是不然。秦之亂天下之法,無待于李斯,斯亦未嘗以其學(xué)事秦。

20070327

 
當(dāng)秦之中葉,孝公即位,得商鞅任之。商鞅教孝公燔《詩》、《書》,明法令,設(shè)告坐之過,而禁游宦之民。因秦國地形便利,用其法,富強(qiáng)數(shù)世,兼并諸侯,迄至始皇。始皇之時(shí),一用商鞅成法而已,雖李斯助之,言其便利,益成秦亂,然使李斯不言其便,始皇固自為之而不厭。何也?秦之甘于刻薄而便于嚴(yán)法久矣,其后世所習(xí)以為善者也。斯逆探始皇、二世之心,非是不足以中侈君張吾之寵。是以盡舍其師荀卿之學(xué),而為商鞅之學(xué);掃去三代先王仁政,而一切取自恣肆以為治,焚《詩》、《書》,禁學(xué)士,滅三代法而尚督責(zé),斯非行其學(xué)也,趨時(shí)而已。設(shè)所遭值非始皇、二世,斯之術(shù)將不出于此,非為仁也,亦以趨時(shí)而已。

君子之仕也,進(jìn)不隱賢;小人之仕也,無論所學(xué)識(shí)非也,即有學(xué)識(shí)甚當(dāng),見其君國行事,悖謬無義,疾首嚬蹙于私家之居,而矜夸導(dǎo)譽(yù)于朝庭之上,知其不義而勸為之者,謂天下將諒我之無可奈何于吾君,而不吾罪也;知其將喪國家而為之者,謂當(dāng)吾身容可以免也。且夫小人雖明知世之將亂,而終不以易目前之富貴,而以富貴之謀,貽天下之亂,固有終身安享榮樂,禍遺后人,而彼宴然無與者矣。嗟乎!秦未亡而斯先被五刑夷三族也,其天之誅惡人,亦有時(shí)而信也邪!

且夫人有為善而受教于人者矣,未聞為惡而必受教于人者也。荀卿述先王而頌言儒效,雖間有得失,而大體得治世之要。而蘇氏以李斯之害天下罪及于卿,不亦遠(yuǎn)乎?行其學(xué)而害秦者,商鞅也;舍其學(xué)而害秦者,李斯也。商君禁游宦,而李斯諫逐客,其始之不同術(shù)也,而卒出于同者,豈其本志哉!宋之世,王介甫以平生所學(xué),建熙寧新法,其后章惇、曾布、張商英、蔡京之倫,曷嘗學(xué)介甫之學(xué)耶?而以介甫之政促亡宋,與李斯事頗相類。夫世言法術(shù)之學(xué)足亡人國,固也。吾謂人臣善探其君之隱,一以委曲變化從世好者,其為人尤可畏哉!尤可畏哉!

 [注釋]①宴然:安閑的樣子。②諫逐客:秦始皇曾發(fā)布逐客令,驅(qū)逐六國來到秦國做官的人,李斯寫了著名的《諫逐客書》,提出了反對(duì)意見。

對(duì)下列句子中加點(diǎn)的詞語的解釋,不正確的一項(xiàng)是(    )

    A.非是不足以中侈君張吾之寵         中:符合

    B.滅三代法而尚督責(zé)                 尚:崇尚

    C.知其不義而勸為之者               勸:鼓勵(lì)

    D.而終不以易目前之富貴             易:交換

下列各組句子中,加點(diǎn)的詞的意義和用法相同的一組是(    )

A.因秦國地形便利             不如因普遇之

    B.設(shè)所遭值非始皇、二世       非其身之所種則不食

    C.且夫小人雖明知世之將亂       臣死且不避,卮酒安足辭

    D.不亦遠(yuǎn)乎                     王之好樂甚,則齊國其庶幾乎

下列各項(xiàng)中,加點(diǎn)詞語與現(xiàn)代漢語意義不相同的一項(xiàng)是(    )

    A.小人之仕也,無論所學(xué)識(shí)非也

    B.而大體得治世之要

C.而以富貴之謀,貽天下之亂

    D.一以委曲變化從世好者

下列各句中對(duì)文章的闡述,不正確的一項(xiàng)是(    )

A.蘇軾認(rèn)為李斯以荀卿之學(xué)輔佐秦朝行暴政,致使天下大亂,作者則認(rèn)為李斯是完全舍棄了荀子的說學(xué),李斯的做法只不過是追隨時(shí)勢罷了。

B.作者由論李斯事秦進(jìn)而泛論人臣事君的問題,強(qiáng)調(diào)為臣者對(duì)于國君的“悖謬無義”之政,不應(yīng)為自身的富貴而阿附甚至助長之。

C.此文主旨在于指出秦行暴政是君王自身的原因,作者所論的不可“趨時(shí)”,“中侈君張吾之寵”的道理,在今天仍有借鑒意義。

D.文章開門見山,擺出蘇軾的觀點(diǎn),然后通過對(duì)秦國發(fā)展歷史的分析,駁斥了蘇說的謬論,提出了自己的見解。論證嚴(yán)密,逐層深入,是一篇典范的史論。

把文言文閱讀材料中畫橫線的句子翻譯成現(xiàn)代漢語。

   (1)秦之甘于刻薄而便于嚴(yán)法久矣

譯文:                                                                    

   (2)謂天下將諒我之無可奈何于吾君,而不吾罪也

譯文:                                                                   

   (3)其始之不同術(shù)也,而卒出于同者,豈其本志哉

譯文:                                                                   

查看答案和解析>>

已知函數(shù) R).

(Ⅰ)若 ,求曲線  在點(diǎn)  處的的切線方程;

(Ⅱ)若  對(duì)任意  恒成立,求實(shí)數(shù)a的取值范圍.

【解析】本試題主要考查了導(dǎo)數(shù)在研究函數(shù)中的運(yùn)用。

第一問中,利用當(dāng)時(shí),

因?yàn)榍悬c(diǎn)為(), 則,                 

所以在點(diǎn)()處的曲線的切線方程為:

第二問中,由題意得,即可。

Ⅰ)當(dāng)時(shí),

,                                  

因?yàn)榍悬c(diǎn)為(), 則,                  

所以在點(diǎn)()處的曲線的切線方程為:.    ……5分

(Ⅱ)解法一:由題意得,.      ……9分

(注:凡代入特殊值縮小范圍的均給4分)

,           

因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070911405226518211/SYS201207091141419057564738_ST.files/image016.png">,所以恒成立,

上單調(diào)遞增,                            ……12分

要使恒成立,則,解得.……15分

解法二:                 ……7分

      (1)當(dāng)時(shí),上恒成立,

上單調(diào)遞增,

.                  ……10分

(2)當(dāng)時(shí),令,對(duì)稱軸,

上單調(diào)遞增,又    

① 當(dāng),即時(shí),上恒成立,

所以單調(diào)遞增,

,不合題意,舍去  

②當(dāng)時(shí),, 不合題意,舍去 14分

綜上所述: 

 

查看答案和解析>>

已知函數(shù)f(x)=ex-ax,其中a>0.

(1)若對(duì)一切x∈R,f(x) 1恒成立,求a的取值集合;

(2)在函數(shù)f(x)的圖像上去定點(diǎn)A(x1, f(x1)),B(x2, f(x2))(x1<x2),記直線AB的斜率為k,證明:存在x0∈(x1,x2),使恒成立.

【解析】解:.

當(dāng)時(shí)單調(diào)遞減;當(dāng)時(shí)單調(diào)遞增,故當(dāng)時(shí),取最小值

于是對(duì)一切恒成立,當(dāng)且僅當(dāng).       、

當(dāng)時(shí),單調(diào)遞增;當(dāng)時(shí),單調(diào)遞減.

故當(dāng)時(shí),取最大值.因此,當(dāng)且僅當(dāng)時(shí),①式成立.

綜上所述,的取值集合為.

(Ⅱ)由題意知,

,則.當(dāng)時(shí),單調(diào)遞減;當(dāng)時(shí),單調(diào)遞增.故當(dāng)

從而,

所以因?yàn)楹瘮?shù)在區(qū)間上的圖像是連續(xù)不斷的一條曲線,所以存在使成立.

【點(diǎn)評(píng)】本題考查利用導(dǎo)函數(shù)研究函數(shù)單調(diào)性、最值、不等式恒成立問題等,考查運(yùn)算能力,考查分類討論思想、函數(shù)與方程思想等數(shù)學(xué)方法.第一問利用導(dǎo)函數(shù)法求出取最小值對(duì)一切x∈R,f(x) 1恒成立轉(zhuǎn)化為從而得出求a的取值集合;第二問在假設(shè)存在的情況下進(jìn)行推理,然后把問題歸結(jié)為一個(gè)方程是否存在解的問題,通過構(gòu)造函數(shù),研究這個(gè)函數(shù)的性質(zhì)進(jìn)行分析判斷.

 

查看答案和解析>>

已知函數(shù).(

(1)若在區(qū)間上單調(diào)遞增,求實(shí)數(shù)的取值范圍;

(2)若在區(qū)間上,函數(shù)的圖象恒在曲線下方,求的取值范圍.

【解析】第一問中,首先利用在區(qū)間上單調(diào)遞增,則在區(qū)間上恒成立,然后分離參數(shù)法得到,進(jìn)而得到范圍;第二問中,在區(qū)間上,函數(shù)的圖象恒在曲線下方等價(jià)于在區(qū)間上恒成立.然后求解得到。

解:(1)在區(qū)間上單調(diào)遞增,

在區(qū)間上恒成立.  …………3分

,而當(dāng)時(shí),,故. …………5分

所以.                 …………6分

(2)令,定義域?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012061918574873515193/SYS201206191859562664899842_ST.files/image016.png">.

在區(qū)間上,函數(shù)的圖象恒在曲線下方等價(jià)于在區(qū)間上恒成立.   

        …………9分

① 若,令,得極值點(diǎn),

當(dāng),即時(shí),在(,+∞)上有,此時(shí)在區(qū)間上是增函數(shù),并且在該區(qū)間上有,不合題意;

當(dāng),即時(shí),同理可知,在區(qū)間上遞增,

,也不合題意;                     …………11分

② 若,則有,此時(shí)在區(qū)間上恒有,從而在區(qū)間上是減函數(shù);

要使在此區(qū)間上恒成立,只須滿足

由此求得的范圍是.        …………13分

綜合①②可知,當(dāng)時(shí),函數(shù)的圖象恒在直線下方.

 

查看答案和解析>>


同步練習(xí)冊答案