題目列表(包括答案和解析)
命題p:關于的不等式的解集為;
命題q:函數為增函數.
分別求出符合下列條件的實數的取值范圍.
(1)p、q至少有一個是真命題;(2)p∨q是真命題且p∧q是假命題.
【解析】本試題主要考查了函數的單調性,不等式的解集,以及命題的真值判定的綜合運用。
命題p:關于的不等式的解集為;
命題q:函數為增函數.
分別求出符合下列條件的實數的取值范圍.
(1)p、q至少有一個是真命題;(2)p∨q是真命題且p∧q是假命題.
【解析】本試題主要考查了函數的單調性,不等式的解集,以及命題的真值判定的綜合運用。
命題p:關于的不等式的解集為;
命題q:函數為增函數.
分別求出符合下列條件的實數的取值范圍.
(1)p、q至少有一個是真命題;(2)p∨q是真命題且p∧q是假命題.
【解析】本試題主要考查了函數的單調性,不等式的解集,以及命題的真值判定的綜合運用。
一.選擇題
1~10 BADDA BCBCD
二.填空題
11.2 12. 13. 14.8 15.45
三.解答題
16.解:因為,所以 ………………………………(1分)
由得,解得 ………………………………(3分)
因為,故集合應分為和兩種情況
(1)時, …………………………………(6分)
(2)時, ……………………………………(8分)
所以得 …………………………………………………(9分)
若真假,則…………………………………………………………(10分)
若假真,則 ……………………………………………………………(11分)
故實數的取值范圍為或………………………………………(12分)
17.解:(1)由1的解集有且只有一個元素知
或 ………………………………………(2分)
當時,函數在上遞增,此時不滿足條件2
綜上可知 …………………………………………(3分)
……………………………………(6分)
(2)由條件可知……………………………………(7分)
當時,令或
所以或……………………………………………………………(9分)
又時,也有……………………………(11分)
綜上可得數列的變號數為3……………………………………………(12分)
18.解:(1)當時,………………………(1分)
當時,……………………(2分)
由,知又是周期為4的函數,所以
當時
…………………………(4分)
當時
…………………………(6分)
故當時,函數的解析式為
………………………………(7分)
(2)當時,由,得
或或
解上述兩個不等式組得…………………………………………(10分)
故的解集為…………………(12分)
19.解:(1)當時,,……………………(2分)
當時,,
綜上,日盈利額(萬元)與日產量(萬件)的函數關系為:
…………………………………………………………(4分)
(2)由(1)知,當時,每天的盈利額為0……………………………(6分)
當時,
當且僅當時取等號
所以當時,,此時……………………………(8分)
當時,由知
函數在上遞增,,此時……(10分)
綜上,若,則當日產量為3萬件時,可獲得最大利潤
若,則當日產量為萬件時,可獲得最大利潤…………(12分)
20.解:(1)將點代入得
因為直線,所以……………………………………(3分)
(2) ,
當為偶數時,為奇數,……………(5分)
當為奇數時,為偶數,(舍去)
綜上,存在唯一的符合條件…………………………………………………(7分)
(3)證明不等式即證明
成立,下面用數學歸納法證明
1當時,不等式左邊=,原不等式顯然成立………………………(8分)
2假設時,原不等式成立,即
當時
=
,即時,原不等式也成立 ………………(11分)
根據12所得,原不等式對一切自然數都成立 ……………………………(13分)
21.解:(1)由得……………………(1分)
又的定義域為,所以
當時,
當時,,為減函數
當時,,為增函數………………………(5分)
所以當時,的單調遞增區(qū)間為
單調遞減區(qū)間為…………………(6分)
(2)由(1)知當時,,遞增無極值………(7分)
所以在處有極值,故且
因為且,所以在上單調
當為增區(qū)間時,恒成立,則有
………………………………………(9分)
當為減區(qū)間時,恒成立,則有
無解 ……………………(13分)
由上討論得實數的取值范圍為 …………………………(14分)
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com