15.在平面幾何里.有勾股定理:“設△ABC的兩邊AB.AC互相垂直.則AB2+AC2=BC2 查看更多

 

題目列表(包括答案和解析)

3、在平面幾何里,有勾股定理:“設△ABC的兩邊AB,AC互相垂直,則|AB|2+|AC|2=|BC|2”拓展到空間,類比平面幾何的勾股定理,“設三棱錐A-BCD的三個側面ABC、ACD、ADB 兩兩相互垂直,則可得”( 。

查看答案和解析>>

在平面幾何里,有勾股定理:“設△ABC的兩邊AB,AC互相垂直,則AB2+AC2=BC2.”拓展到空間,類比平面幾何的勾股定理,研究三棱錐的面面積與底面面積間的關系?梢缘贸龅恼_結論是:“設三棱錐A—BCD的三個側面ABC、ACD、ADB兩兩相互垂直,則                                        ”.

 

查看答案和解析>>

在平面幾何里,有勾股定理:“設△ABC的兩邊ABAC互相垂直,則AB2+AC2=BC2”拓展到空間,類比平面幾何的勾股定理,“設三棱錐ABCD的三個側面ABC、ACD、ADB兩兩相互垂直,則可得”猜想正確的是(    )

A.AB2+AC2+ AD2=BC2 +CD2 +BD2              B.

C.          D.AB2×AC2×AD2=BC2 ×CD2 ×BD2

 

查看答案和解析>>

在平面幾何里,有勾股定理:“設△ABC的兩邊AB,AC互相垂直,則”拓展到空間,類比平面幾何的勾股定理,“設三棱錐A—BCD的三個側面ABC、ACD、ADB 兩兩相互垂直,則可得” (     )

A.

B.  

C.       

D.

 

 

查看答案和解析>>

在平面幾何里,有勾股定理:“設△ABC的兩邊AB,AC互相垂直,則AB2+AC2=BC2.”拓展到空間,類比平面幾何的勾股定理,研究三棱錐的面面積與底面面積間的關系?梢缘贸龅恼_結論是:“設三棱錐A—BCD的三個側面ABC、ACD、ADB兩兩相互垂直,則                                       ”.

查看答案和解析>>

一、

1.C  2.D  3.B  4.C  5.B  6.D  7.D  8.C  9.C  10.B  11.C  12.A

二、13.   14.  15.  16.72

三、

17.(I)證明:取BD中點M,連結MC,FM,

        ∵F為BD1中點, ∴FM∥D1D且FM=D1D

又EC=CC1,且EC⊥MC,

∴四邊形EFMC是矩形  ∴EF⊥CC1  

又CM⊥面DBD1  ∴EF⊥面DBD1

∵BD1面DBD1,

∴EF⊥BD1  故EF為BD1與CC1的公垂線

(II)解:連結ED1,有V

由(I)知EF⊥面DBD1,設點D1到面BDE的距離為d,

則S△DBC?d=S△DCD?EF.

∵AA1=2?AB=1.

故點D1到平面BDE的距離為.

18.解:設z=

        由題設

       即 

    (舍去)

 

       即|z|=

19.(I)解∵

(II)證明:由已知

     

         =

           所以

20.解(I)

               

       所以函數的最小正周期為π,最大值為.

(Ⅱ)由(Ⅰ)知

1

1

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

21.解:如圖建立坐標系:以O為原點,正東方向為x軸正向.

        在時刻:t(h)臺風中心的坐標為

        此時臺風侵襲的區(qū)域是,

        其中t+60,

        若在t時,該城市O受到臺風的侵襲,則有

即,   解得.

答:12小時后該城市開始受到臺風氣侵襲

22.解:根據題設條件,首先求出點P坐標滿足的方程,據此再判斷是否存在兩定點,使得

點P到定點距離的和為定值.

按題意有A(-2,0),B(2,0),C(2,4a),D(-2,4a

設,

由此有E(2,4ak),F(2-4k,4a),G(-2,4a-4ak).

直線OF的方程為:,        ①

直線GE的方程為:. 、

從①,②消去參數k,得點P(x,y)坐標滿足方程,

整理得.

當時,點P的軌跡為圓弧,所以不存在符合題意的兩點.

當時,點P軌跡為橢圓的一部分,點P到該橢圓焦點的距離的和為定長.

當時,點P到橢圓兩個焦點的距離之和為定值.

當時,點P到橢圓兩個焦點的距離之

和為定值.

 

 

 

 


同步練習冊答案