(1)若橢圓的離心率為.焦距為2.求橢圓的標(biāo)準(zhǔn)方程,(2)若.當(dāng)橢圓的離率時.求橢圓的長軸長的最大值. 查看更多

 

題目列表(包括答案和解析)

 若橢圓的離心率為,焦點(diǎn)在軸上,且長軸長為10,曲線上的點(diǎn)與橢圓的兩個焦點(diǎn)的距離之差的絕對值等于4.

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)求曲線的方程。

 

查看答案和解析>>

若橢圓的離心率為,焦點(diǎn)在軸上,且長軸長為10,曲線上的點(diǎn)與橢圓的兩個焦點(diǎn)的距離之差的絕對值等于4.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)求曲線的方程。

查看答案和解析>>

若橢圓的離心率為,焦點(diǎn)在軸上,且長軸長為10,曲線上的點(diǎn)與橢圓的兩個焦點(diǎn)的距離之差的絕對值等于4.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)求曲線的方程。

查看答案和解析>>

橢圓的離心率為,橢圓的上頂點(diǎn)到左焦點(diǎn)的距離為,左、右焦點(diǎn)分別為F1,F(xiàn)2

(1)求橢圓C的方程;

(2)若直線y=kx+t(t>0)與以F1F2為直徑的圓相切,并與橢圓C交于A,B兩點(diǎn),向量在向量方向上的投影是p,且(·)p2=m(O為坐標(biāo)原點(diǎn)),求m與k的關(guān)系式;

(3)在(2)的情形下,當(dāng)時,求△ABO面積的取值范圍.

查看答案和解析>>

已知橢圓的離心率為,其左焦點(diǎn)到點(diǎn)的距離為.

(1)求橢圓的方程;

(2)過右焦點(diǎn)的直線與橢圓交于不同的兩點(diǎn)、,則內(nèi)切圓的圓面積是否存在最大值?若存在,求出這個最大值及此時的直線方程;若不存在,請說明理由.

 

查看答案和解析>>

一、選擇題:

1.B  2.D  3.A  4.A  5.A  6.B  7.B  8.B  9.C  10.C

二、填空題:

11.   12.     13.   14.      15. 16.      17.      18.       19. 20.1)、5)       21.       22.     23.3)4)        24.3

三、解答題:

25解:(Ⅰ) ……2分

 

.

的最小正周期是. 

(Ⅱ) ∵

.  

∴當(dāng)時,函數(shù)取得最小值是.  

.  

26解:(1)∵,∴,即.      

.                  

,得;                     

,得.因此,

函數(shù)的單調(diào)增區(qū)間為;單調(diào)減區(qū)間為

取得極大值為;取得極小值為

由∵

在[-,1]上的的最大值為,最小值為.  

(2) ∵,∴

∵函數(shù)的圖象上有與軸平行的切線,∴有實(shí)數(shù)解.  

,∴,即

因此,所求實(shí)數(shù)的取值范圍是.            

27解:(1)在中,,

而PD垂直底面ABCD,

,

中,,即為以為直角的直角三角形。

設(shè)點(diǎn)到面的距離為,

,

,

;

(2),而,

,,,是直角三角形;

(3),,

,

的面積

28解:(I)因?yàn)椋?sub>成立,所以:

由: ,得 

由:,得

解之得: 從而,函數(shù)解析式為: 

(2)由于,,設(shè):任意兩數(shù) 是函數(shù)圖像上兩點(diǎn)的橫坐標(biāo),則這兩點(diǎn)的切線的斜率分別是:

又因?yàn)椋?sub>,所以,,得:

知:                                                

故,當(dāng)  是函數(shù)圖像上任意兩點(diǎn)的切線不可能垂直  

29解:(1)∵  ∴

兩式相減得:

時,  ∴ 

是首項(xiàng)為,公比為的等比數(shù)列 

 

(2)   

 

以上各式相加得:

 

30解:(1)

                              

(2)由

      

                  

        

,

                                            

由此得

 


同步練習(xí)冊答案