是函數(shù)圖象上三點,且. 查看更多

 

題目列表(包括答案和解析)

精英家教網(wǎng)函數(shù)y=f(x)是定義在R上的偶函數(shù),且f(-1+x)=f(-1-x),當x∈[-2,-1]時,f(x)=t(x+2)3-t(x+2)(t∈R),記函數(shù)y=f(x)的圖象在(
1
2
,f(
1
2
))處的切線為l,f′(
1
2
)=1.
(Ⅰ)求y=f(x)在[0,1]上的解析式;
(Ⅱ)點列B1(b1,2),B2(b2,3),…,Bn(bn,n+1)在l上,A1(x1,0),A2(x2,0),…,An(xn,0)依次為x軸上的點,如圖,當n∈N*時,點An,Bn,An+1構成以AnAn+1為底邊的等腰三角形.若x1=a(0<a<1),求數(shù)列{xn}的通項公式;
(Ⅲ)在(Ⅱ)的條件下,是否存在實數(shù)a使得數(shù)列{xn}是等差數(shù)列?如果存在,寫出a的一個值;如果不存在,請說明理由.

查看答案和解析>>

函數(shù)y=f(x)是定義在R上的偶函數(shù),當x∈[-1,0]時,f(x)=-tx3+tx,記函數(shù)f(x)的圖象在x=處的切線為l,f′()=1.

    (Ⅰ)當x∈[0,1]時,求函數(shù)f(x)的解析式;

    (Ⅱ)求切線l的方程;

    (Ⅲ)點列B1(b1,2),B2(b2,3),…,Bn(bn,n+1)在l上,A1(x1,0),A2(x2,0),…,An(xn,0)依次為x軸上的點,如圖,當n∈N*,點An、Bn、An+1構成以AnAn+1為底邊的等腰三角形.若x1=a(0<a<1),且數(shù)列{xn}是等差數(shù)列,求a的值和數(shù)列{xn}的通項公式.

查看答案和解析>>

已知函數(shù)圖象的對稱中心為的極小值為.

(1)求的解析式;

(2)設,若有三個零點,求實數(shù)的取值范圍;

(3)是否存在實數(shù),當時,使函數(shù)

在定義域[a,b] 上的值域恰為[a,b],若存在,求出k的范圍;若不存在,說明理由.

查看答案和解析>>

函數(shù)y=f(x)是定義在R上的偶函數(shù),且f(-1+x)=f(-1-x),當x∈[-2,-1]時,f(x)=t(x+2)3-t(x+2)(t∈R),記函數(shù)y=f(x)的圖象在處的切線為l,
(Ⅰ)求y=f(x)在[0,1]上的解析式;
(Ⅱ)點列B1(b1,2),B2(b2,3),…,Bn(bn,n+1)在l上,A1(x1,0),A2(x2,0),…,An(xn,0)依次為x軸上的點,如圖,當n∈N*時,點An,Bn,An+1構成以AnAn+1為底邊的等腰三角形.若x1=a(0<a<1),求數(shù)列{xn}的通項公式;
(Ⅲ)在(Ⅱ)的條件下,是否存在實數(shù)a使得數(shù)列{xn}是等差數(shù)列?如果存在,寫出a的一個值;如果不存在,請說明理由.

查看答案和解析>>

若函數(shù)f(x)=|sinx|的圖象與直線y=kx僅有三個公共點,且其橫坐標分別為α,β,γ(α<β<γ),給出下列結論:①k=-cosγ;②γ∈(π,
2
)
;③γ=tanγ;④sin2γ=
1+γ2
其中正確的是
③④
③④
(填上所有正確的序號)

查看答案和解析>>

一、選擇題:

1.D  2.D 3.D  4.C  5.A 6.D 7.B  8.C 9.B 10.B  11.D 12.D

二、填空題:

13、    14、  15、對任意使   16、2    17、

18、    19、   20、8      21、     22、40    23、   

24、4       25、    26、

三、解答題:

27解:(1)由,得

,

, ,

于是,

,即

(2)∵角是一個三角形的最小內(nèi)角,∴0<,,

,則(當且僅當時取=),

故函數(shù)的值域為

28證明:(1)同理,

又∵       ∴平面. 

(2)由(1)有平面

又∵平面,    ∴平面平面

(3)連接AG并延長交CD于H,連接EH,則,

在AE上取點F使得,則,易知GF平面CDE.

29解:(1),                     

,,                         

。   

(2)∵,

∴當且僅當,即時,有最大值。

,∴取時,(元),

此時,(元)。答:第3天或第17天銷售收入最高,

此時應將單價定為7元為好

30解:(1)設M

∵點M在MA上∴  ①

同理可得

由①②知AB的方程為

易知右焦點F()滿足③式,故AB恒過橢圓C的右焦點F(

(2)把AB的方程

又M到AB的距離

∴△ABM的面積

31解:(Ⅰ)  

所以函數(shù)上是單調(diào)減函數(shù).

(Ⅱ) 證明:據(jù)題意x1<x2<x3,

由(Ⅰ)知f (x1)>f (x2)>f (x3),  x2=

即ㄓ是鈍角三角形

(Ⅲ)假設ㄓ為等腰三角形,則只能是

 

  ①         

而事實上,    ②

由于,故(2)式等號不成立.這與式矛盾. 所以ㄓ不可能為等腰三角形.

32解:(Ⅰ)

    

故數(shù)列為等比數(shù)列,公比為3.           

(Ⅱ)

                 

所以數(shù)列是以為首項,公差為 loga3的等差數(shù)列.

                           

=1+3,且

                           

    

(Ⅲ)

      

假設第項后有

      即第項后,于是原命題等價于

      

  故數(shù)列項起滿足.    

 


同步練習冊答案