2.證明空間線面平行與垂直.是必考題型.解題時要由已知想性質(zhì).由求證想判定.即分析法與綜合法相結(jié)合尋找證明思路. 查看更多

 

題目列表(包括答案和解析)

如圖所示的長方體中,底面是邊長為的正方形,的交點,,是線段的中點.

(Ⅰ)求證:平面;

(Ⅱ)求證:平面;

(Ⅲ)求二面角的大小.

【解析】本試題主要考查了線面平行的判定定理和線面垂直的判定定理,以及二面角的求解的運用。中利用,又平面平面,∴平面,,又,∴平面. 可得證明

(3)因為∴為面的法向量.∵,,

為平面的法向量.∴利用法向量的夾角公式,,

的夾角為,即二面角的大小為

方法一:解:(Ⅰ)建立如圖所示的空間直角坐標(biāo)系.連接,則點

,又點,∴

,且不共線,∴

平面,平面,∴平面.…………………4分

(Ⅱ)∵,

,,即,,

,∴平面.   ………8分

(Ⅲ)∵,,∴平面,

為面的法向量.∵,

為平面的法向量.∴,

的夾角為,即二面角的大小為

 

查看答案和解析>>

下面是空間線面位置關(guān)系中傳遞性的部分相關(guān)命題:
①與兩條平行直線中一條平行的平面必與另一條直線平行;
②與兩條平行直線中一條垂直的平面必與另一條直線垂直;
③與兩條垂直直線中一條平行的平面必與另一條直線垂直;
④與兩條垂直直線中一條垂直的平面必與另一條直線平行;
⑤與兩條平行平面中一個平行的直線必與另一個平面平行;
⑥與兩條平行平面中一個垂直的直線必與另一個平面垂直;
⑦與兩條垂直平面中一個平行的直線必與另一個平面垂直;
⑧與兩條垂直平面中一個垂直的直線必與另一個平面平行;
其中正確命題的個數(shù)有
2
2
個.

查看答案和解析>>

如圖所示,四面體被一平面所截,截面是一個平行四邊形.求證:;

【答案】(理)證明:EH∥FG,EH

EH∥面,又CD,EH∥CD, 又EH面EFGH,CD面EFGH

EH∥BD  

【解析】本試題主要是考查了空間四面體中線面位置關(guān)系的判定。

要證明線面平行可知通過線線平行,結(jié)合判定定理得到結(jié)論。

 

查看答案和解析>>

在邊長為的正方形ABCD中,E、F分別為BC、CD的中點,M、N分別為AB、CF的中點,現(xiàn)沿AE、AF、EF折疊,使B、C、D三點重合,構(gòu)成一個三棱錐.

(I)判別MN與平面AEF的位置關(guān)系,并給出證明;

(II)求多面體E-AFMN的體積.

                 

【解析】第一問因翻折后B、C、D重合(如下圖),所以MN應(yīng)是的一條中位線,則利用線線平行得到線面平行。

第二問因為平面BEF,……………8分

,

,又 ∴

(1)因翻折后B、C、D重合(如圖),

所以MN應(yīng)是的一條中位線,………………3分

.………6分

(2)因為平面BEF,……………8分

,

,………………………………………10分

 ∴

 

查看答案和解析>>

如圖,四棱錐P-ABCD中,底面ABCD為菱形,PA底面ABCD,AC=,PA=2,E是PC上的一點,PE=2EC。

(I)     證明PC平面BED;

(II)   設(shè)二面角A-PB-C為90°,求PD與平面PBC所成角的大小

【解析】本試題主要是考查了四棱錐中關(guān)于線面垂直的證明以及線面角的求解的運用。

從題中的線面垂直以及邊長和特殊的菱形入手得到相應(yīng)的垂直關(guān)系和長度,并加以證明和求解。

解法一:因為底面ABCD為菱形,所以BDAC,又

【點評】試題從命題的角度來看,整體上題目與我們平時練習(xí)的試題和相似,底面也是特殊的菱形,一個側(cè)面垂直于底面的四棱錐問題,那么創(chuàng)新的地方就是點E的位置的選擇是一般的三等分點,這樣的解決對于學(xué)生來說就是比較有點難度的,因此最好使用空間直角坐標(biāo)系解決該問題為好。

 

查看答案和解析>>


同步練習(xí)冊答案