20.如圖.在斜三棱柱ABC-A1B1C1中.側(cè)面AA1B1B⊥底面ABC.側(cè)棱AA1與底面ABC成60°角.AA1=2.底面ABC是邊長為2的正三角形.其重心為G點(diǎn).E是線段BC1上的一點(diǎn).且BE=BC1.(1)求證:GE∥側(cè)面AA1B1B,(2)求平面B1GE與底面ABC所成銳二面角的大小. 查看更多

 

題目列表(包括答案和解析)

如圖,在斜三棱柱ABC-A1B1C1中,側(cè)面AA1B1B⊥底面ABC,側(cè)棱AA1與底面ABC成60°角,AA1=2,底面ABC是邊長為2的三角形,G為三角形ABC內(nèi)一點(diǎn),E是線段BC1上一點(diǎn),且
BE
=
1
3
BC1
,
GE
=
1
3
AB1

(1)請判斷點(diǎn)G在三角形ABC內(nèi)的位置;
(2)求平面B1GE與底面ABC所成銳角二面角的大。

查看答案和解析>>

精英家教網(wǎng)如圖,在斜三棱柱ABC-A1B1C1中,側(cè)面AA1B1B⊥底面ABC,側(cè)棱AA1與底面ABC成60°的角,AA1=2.底面ABC是邊長為2的正三角形,其重心為G點(diǎn),E是線段BC1上一點(diǎn),且BE=
13
BC1
(1)求證:GE∥側(cè)面AA1BB;
(2)求平面B1GE與底面ABC所成銳二面角的正切值.

查看答案和解析>>

如圖,在斜三棱柱ABC-A1B1C1中,側(cè)面AA1B1B⊥底面ABC,側(cè)棱AA1與底面ABC成60°的角,AA1=2.底面ABC是邊長為2的正三角形,其重心為G點(diǎn),E是線段BC1上一點(diǎn),且BE=
13
BC1
(1)求證:GE∥側(cè)面AA1B1B;
(2)求平面B1GE與底面ABC所成銳二面角的正切值;
(3)求點(diǎn)B到平面B1GE的距離.

查看答案和解析>>

(13分)如圖,在斜三棱柱ABC—A1B1C1中,側(cè)面AA1B1B⊥底面ABC,側(cè)棱AA1與底面ABC成60°的角,AA1=2,底面ABC是邊長為2的正三角形,其重心是G點(diǎn),E是線段BC1上的一點(diǎn),且BEBC1,

(1)求證:GE∥側(cè)面AA1B1B;

(2)求平面B1GE與底面ABC所成銳二面角的正切值。

 

 

 

 

 

查看答案和解析>>

如圖,在斜三棱柱ABC-A1B1C1中,側(cè)面AA1B1B⊥底面ABC,側(cè)棱AA1與底面ABC成60° 的角,AA1=2.底面ABC是邊長為2的正三角形,其重心為G點(diǎn),E是線段BC1上一點(diǎn),且BE=數(shù)學(xué)公式BC1
(1)求證:GE∥側(cè)面AA1BB;
(2)求平面B1GE與底面ABC所成銳二面角的正切值.

查看答案和解析>>

 

一.選擇

1.  選B  滿足f[f(x)]=x有2個(gè)  ①1→1,2→2  ②1→2,2→1

2.  選C  只需注意

3.  選C    當(dāng)時(shí) 

4.  選D  分組(1),(2,2),(3,3,3),(4,4,4,4)……

          前13組共用去1+2+……+13=個(gè)數(shù),而第14組有14個(gè)數(shù),

故第100項(xiàng)是在第14組中.

5.  選D  由于0<a<b   有f(a)=f(b)  故0<a<, b>

即 f(a)=2-a2 , f(b)=b2-2

          由2-a2= b2-2得到a2+b2=4且a≠b  ∴0<ab<2

6.選B   由已知  ∴  ∴.

7.選D   由.

8.選C   設(shè)正方體的邊長為a,當(dāng)截面為菱形,即過相對棱(如AA1及CC1)時(shí),

面積最小, 此時(shí)截面為邊長,兩對角線分別為的菱形,

此時(shí),當(dāng)截面過兩相對棱(如BC及A1D1)時(shí)截面積最大,

此時(shí)  ∴

1

10.選D   按兩相對面是否同色分類 ①兩相對面不同色4

②兩相對面同色

∴共有4+=96

11.選D   注意到    sinx 

                     sinx 

                 且當(dāng)x=0,時(shí),

12.選A   任取, 則由得到

          

         

 

  故f(x)在R上是單調(diào)增函數(shù)

二.填空

13.16   設(shè)ξ表示這個(gè)班的數(shù)學(xué)成績,則ξ~N(80,102),設(shè)Z= ,則Z~N(0,1)

      P(80<ξ<90=P(0<Z<1=

      而48×0.3413=16.3824   故應(yīng)為16人

14.129 令x=1  及  而a0=-1  ∴

15.①②④⑤   對于③當(dāng)x=時(shí)就不能取到最大值

16.     3人傳球基本事件總數(shù)為25=32,經(jīng)過5次傳球,球恰好回到甲手中有三類

          ①甲□甲□□      共2×2=4種

②甲□□甲□甲    共2×2=4種

③甲□□□□甲    共2種

     ∴概率為

三.解答題

17.解:……4分

 (1)T=                                           …………………………6分

 (2)當(dāng)時(shí)f(x)取最小值-2         ……………………………9分

 (3)令  ………………12分

18.解:(1)

正面向上次數(shù)m

3

2

1

      <menuitem id="cxp97"><progress id="cxp97"><acronym id="cxp97"></acronym></progress></menuitem>

        …………3分

        概率P(m)

         

        正面向上次數(shù)n

        2

        1

        <pre id="cxp97"><nobr id="cxp97"></nobr></pre>

        …………6分

        概率P(n)

         

          (2)若m>n,則有三種情形          ………………………………………………7分

               m=3時(shí),n=2,1,0  ,          ………………………8分

               m=2時(shí),n=1,0  ,          ……………………………9分

               m=1時(shí),n=0  ,              ……………………………10分

         ∴甲獲勝概率P==     ………………………………12分

         

        19.(1)由  ∴   …………3分

           ∵f(x)的定義域?yàn)閤≥1  ∴≥1    ……………4分

        ∴當(dāng)a>1時(shí),≥0     ∴f(x) ≥0

        當(dāng)0<a<1時(shí),≤0   ∴f(x)≤0

        ∴當(dāng)a>1,                   …………………………5分

        當(dāng)0<a<1時(shí),          ………………………………6分

        (2)由(1)知

         ∴

                         …………………………7分

        設(shè)函數(shù)      在<0,>0

        ∴在  為增函數(shù)                ……………………………8分

        ∴當(dāng)1<a<2時(shí),          ………………………………………10分

            =

            =<2n        ……………………12分

        20.(1)證:延長B1E交BC于F,∵△B1EC1∽△FEB,BE=EC1,∴BF=,

        從而F為BC的中點(diǎn),           …………………………………………………………3分

        ∵G是△ABC的重心,∴A、G、F三點(diǎn)共線

            ∴∥AB1         ……………………………………………5分

        又GE側(cè)面AA1B1B,∴GE∥側(cè)面AA1B1B        ……………………………………6分

         

        (2)解:過A1作A1O⊥AB交于O,由已知可知∠A1AO=60°

        ∴O為AB的中點(diǎn),         ………………………………………………………………7分

        連OC,作坐標(biāo)系O-xyz如圖易知平面ABC的法向量     ………………8分

        A(0,?1,0),F(xiàn)(),  B1(0,2,)

        ,          ………………………………9分

        設(shè)平面B1GE的法向量為

        平面B1GE也就是平面AB1F

        可取   ………………………………………………10分

        ∴二面角(銳角)的余弦cosθ=

        ∴二面角(銳角)為        ………………………………………………12分

        21.(1)由于,  O為原點(diǎn),∴…………1分

        ∴L : x =?2  由題意  動(dòng)點(diǎn)P到定點(diǎn)B的距離和到定直線的距離相等,

        故點(diǎn)P的 軌跡是以B為焦點(diǎn)L為準(zhǔn)線的拋物線    ……………………………………2分

        ∴動(dòng)點(diǎn)P的軌跡為y2=8x                ………………………………………………4分

        (2)由  消去y 得到      ………………6分

        設(shè)M(x1 , y1)  N(x2 , y2),則根據(jù)韋達(dá)定理得

        其中k>0                                               ………………………7分

             ………………8分

          

        ≥17   ∴0<k≤1   ∴0<≤1       ………………………………9分

        ∴直線m的傾斜角范圍是(0,       ……………………………………………10分

        ②由于  ∴Q是線段MN的中點(diǎn)      …………………………………11分

        令Q(x0, y0)  則,

          從而

                       …………………………………………12分

          即

          由于k>0

                   ……………………………………………………………14分

        22.(1)兩邊取自然對數(shù) blna>alnb 即

        ∴原不等式等價(jià)于    設(shè)(x>e)

          x>e時(shí),<0  ∴在(e , +∞)上為減函數(shù),

        由e<a<b   ∴f(a)>f(b)   ∴

        得證                   ……………………………………………………6分

        (2)由(1)可知,在(0,1)上為增函數(shù)

        由f(a)=f(b)   ∴a=b               ……………………………………………………8分

        (3)由(1)知,當(dāng)x∈(0,e)時(shí),>0,當(dāng)x∈(e,+∞)時(shí),<0

        >0           …………………………10分

        其中   ∴a=4 , b=2  或a=2 , b=4          ……………………………12分


        同步練習(xí)冊答案
        1. <thead id="cxp97"></thead>