C. D. 查看更多

 

題目列表(包括答案和解析)

C.選修4-4:坐標(biāo)系與參數(shù)方程
在極坐標(biāo)系下,已知圓O:和直線
(1)求圓O和直線的直角坐標(biāo)方程;(2)當(dāng)時(shí),求直線與圓O公共點(diǎn)的一個(gè)極坐標(biāo).
D.選修4-5:不等式證明選講
對(duì)于任意實(shí)數(shù),不等式恒成立,試求實(shí)數(shù)的取值范圍.

查看答案和解析>>

C.選修4-4:坐標(biāo)系與參數(shù)方程
在極坐標(biāo)系下,已知圓O:和直線,
(1)求圓O和直線的直角坐標(biāo)方程;(2)當(dāng)時(shí),求直線與圓O公共點(diǎn)的一個(gè)極坐標(biāo).
D.選修4-5:不等式證明選講
對(duì)于任意實(shí)數(shù),不等式恒成立,試求實(shí)數(shù)的取值范圍.

查看答案和解析>>

C

[解析] 由基本不等式,得abab,所以ab,故B錯(cuò);≥4,故A錯(cuò);由基本不等式得,即,故C正確;a2b2=(ab)2-2ab=1-2ab≥1-2×,故D錯(cuò).故選C.

查看答案和解析>>

定義域?yàn)?/span>R的函數(shù)滿足,且當(dāng)時(shí),,則當(dāng)時(shí),的最小值為( )

A B C D

 

查看答案和解析>>

.過(guò)點(diǎn)作圓的弦,其中弦長(zhǎng)為整數(shù)的共有  (  )    

A.16條          B. 17條        C. 32條            D. 34條

 

查看答案和解析>>

一、選擇題

CCCBB   BBDAB   CA

二、填空題

13、       14、2      15、    16、③④

三、解答題

17.解:

                 

                      

建議評(píng)分標(biāo)準(zhǔn):每個(gè)三角函數(shù)“1”分。(下面的評(píng)分標(biāo)準(zhǔn)也僅供參考)

18.解:==--(2分)

= 

*      ----------------------------------------------------------(2分)

   

  -----2分)     原式= -------------(2分)

19.解:(1)由已知得,所以即三角形為等腰三角形。--------------------------------------------------------------------------------------------(3分)

(2)兩式平方相加得,所以。------(3分)

,則,所以,而

這與矛盾,所以---------------------------------------(2分)

20.解:化簡(jiǎn)得--------------------------------------------------(2分)

(1)最小正周期為;--------------------------------------------------------------(2分)

(2)單調(diào)遞減區(qū)間為-------------------------------(2分)

(3)對(duì)稱軸方程為-------------------------------------------(1分)

對(duì)稱中心為------------------------------------------------------(1分)

21.對(duì)方案Ⅰ:連接OC,設(shè),則,

      而

當(dāng),即點(diǎn)C為弧的中點(diǎn)時(shí),矩形面積為最大,等于。

對(duì)方案Ⅱ:取弧EF的中點(diǎn)P,連接OP,交CD于M,交AB于N,設(shè)

如圖所示。

,

所以當(dāng),即點(diǎn)C為弧EF的四等分點(diǎn)時(shí),矩形面積為最大,等于。

,所以選擇方案Ⅰ。

22.解:(1)不是休閑函數(shù),證明略

(2)由題意得,有解,顯然不是解,所以存在非零常數(shù)T,使,

于是有,所以是休閑函數(shù)。

(3)顯然時(shí)成立;

當(dāng)時(shí),由題義,,由值域考慮,只有,

當(dāng)時(shí),成立,則

當(dāng)時(shí),成立,則,綜合的的取值為

 

 

 


同步練習(xí)冊(cè)答案