(2)若在(0.)上是單調(diào)遞減函數(shù).求的最大值. . 查看更多

 

題目列表(包括答案和解析)

定義在(0,∞)上的單調(diào)遞減函數(shù)f(x),若f(x)的導(dǎo)函數(shù)存在且滿足
f(x)
f′(x)
>x
,則下列不等式成立的是( 。

查看答案和解析>>

定義在(0,∞)上的單調(diào)遞減函數(shù)f(x),若f(x)的導(dǎo)函數(shù)存在且滿足,則下列不等式成立的是( )
A.3f(2)<2f(3)
B.3f(4)<4f(3)
C.2f(3)<3f(4)
D.f(2)<2f(1)

查看答案和解析>>

函數(shù)y=f(x)定義在R上單調(diào)遞減且f(0)≠0,對任意實(shí)數(shù)m、n,恒有f(m+n)=f(m)•f(n),集合A={(x,y)|f(x2)•f(y2)>f(1)},B={(x,y)|f(ax-y+2)=1,a∈R},若A∩B=φ,則a的取值范圍是
 

查看答案和解析>>

函數(shù)f(x)是定義在(-2,2)上的奇函數(shù),且在(-2,2)上單調(diào)遞減,若f(m-1)+f(2m-3)>0,求m的取值范圍.

查看答案和解析>>

函數(shù)y=f(x)是定義在R上的恒不為零的函數(shù),且對于任意的x、y∈R,都滿足f(x)•f(y)=f(x+y),則下列四個(gè)結(jié)論中,正確的個(gè)數(shù)是( 。
(1)f(0)=0;     (2)對任意x∈R,都有f(x)>0;     (3)f(0)=1;
(4)若x<0時(shí),有f(x)>f(0),則f(x)在R上的單調(diào)遞減.

查看答案和解析>>

一、選擇題

1.C       2.B      3.C       4.C       5.A      6.C

7.B       8.D      9.C       10.C     11.D     12.D

二、填空題

13.    14.3       15.     16.②

三、解答題

17.解:由,                 ---------------2分

=3,即,               ---------------8分

從而                       ----------------12分

18. 解:(1)∵f (x)=2sinxcos+cos x+a=sin x+cos x+a

=2sin(x+)+a,                                                            ……4分

∴函數(shù)f(x)的最小正周期T=2π.                                         ……6分

(Ⅱ)∵x∈[-,],∴-x+.                         …….7分

∴當(dāng)x+=-,即x=時(shí), fmin(x)=f(-)=-+a;    ……9分

當(dāng)x+=,即x=時(shí), fmax(x)=f()=2+a.               ……11分

由題意,有(-+a)+(2+a)=.

a=-1.                                                ……12分

 19.(本小題滿分12分)

(1)由題意得的最小正周期為                           -----------2分

                                        -------------4分 

是它的一個(gè)對稱中心,

                          ----------------------6分

               ------------------------7分

(2)因?yàn)?sub>,                        ------------------------8分

所以欲滿足條件,必須                          -------------------11分

                                           

即a的最大值為                                       -------------------12分

20. 解:(Ⅰ)當(dāng)每輛車的月租金定為3600元時(shí),未租出的車輛數(shù)為,

所以這時(shí)租出了88輛車.                          -----------------------4分

 (Ⅱ)設(shè)每輛車的月租金定為x元,則租賃公司的月收益為

,                    -------------------------8分

整理得.

所以,當(dāng)x=4100時(shí),最大,最大值為,

即當(dāng)每輛車的月租金定為4100元時(shí),租賃公司的月收益最大,

最大月收益為304200元.                                    --------------------12分

21.解: (Ⅰ)∵為奇函數(shù),∴

                                          ----------------------1分

的最小值為

                                       -----------3分

又直線的斜率為

因此,                                ------------5分

.                             -------------6分

(Ⅱ)

   ,列表如下:

得分  評卷人

極大

極小

   所以函數(shù)的單調(diào)增區(qū)間是.      -----------9分

,

上的最大值是,最小值是.  ---------12分

22. 解:(1)是奇函數(shù),

       則恒成立                  ---------------------2分

      

          ------------------4分

   (2)又在[-1,1]上單調(diào)遞減,------6分

        ----------------------------------------------------8分

      

       令

       則                   ----------------------------12分

      

                                          -------------------------------14分

 

 

 

 

 

 

 

 


同步練習(xí)冊答案