由(Ⅰ).只需分下面兩種情況討論 查看更多

 

題目列表(包括答案和解析)

(2012•武漢模擬)如圖,已知橢圓Γ:
x2
a2
+
y2
b2
=1(a>b>0)的左、右焦點分別是F1(-c,0)、F2(c,0),Q是橢圓外的一個動點,滿足|F1Q|=2a.點P是線段F1Q與該橢圓的交點,點M在線段F2Q上,且滿足
PM
MF2
=0,|
MF2
|≠0.
(Ⅰ)求點M的軌跡C的方程;
(Ⅱ)設不過原點O的直線l與軌跡C交于A,B兩點,若直線OA,AB,OB的斜率依次成等比數列,求△OAB面積的取值范圍;
(Ⅲ)由(Ⅱ)求解的結果,試對橢圓Γ寫出類似的命題.(只需寫出類似的命題,不必說明理由)

查看答案和解析>>

設點是拋物線的焦點,是拋物線上的個不同的點().

(1) 當時,試寫出拋物線上的三個定點、、的坐標,從而使得

(2)當時,若

求證:;

(3) 當時,某同學對(2)的逆命題,即:

“若,則.”

開展了研究并發(fā)現(xiàn)其為假命題.

請你就此從以下三個研究方向中任選一個開展研究:

① 試構造一個說明該逆命題確實是假命題的反例(本研究方向最高得4分);

② 對任意給定的大于3的正整數,試構造該假命題反例的一般形式,并說明你的理由(本研究方向最高得8分);

③ 如果補充一個條件后能使該逆命題為真,請寫出你認為需要補充的一個條件,并說明加上該條件后,能使該逆命題為真命題的理由(本研究方向最高得10分).

【評分說明】本小題若填空不止一個研究方向,則以實得分最高的一個研究方向的得分作為本小題的最終得分.

【解析】第一問利用拋物線的焦點為,設,

分別過作拋物線的準線的垂線,垂足分別為.

由拋物線定義得到

第二問設,分別過作拋物線的準線垂線,垂足分別為.

由拋物線定義得

第三問中①取時,拋物線的焦點為,

,分別過作拋物線的準線垂線,垂足分別為.由拋物線定義得

,

,不妨取;;

解:(1)拋物線的焦點為,設,

分別過作拋物線的準線的垂線,垂足分別為.由拋物線定義得

 

因為,所以,

故可取滿足條件.

(2)設,分別過作拋物線的準線垂線,垂足分別為.

由拋物線定義得

   又因為

;

所以.

(3) ①取時,拋物線的焦點為,

,分別過作拋物線的準線垂線,垂足分別為.由拋物線定義得

,

,不妨取;;,

.

,,是一個當時,該逆命題的一個反例.(反例不唯一)

② 設,分別過

拋物線的準線的垂線,垂足分別為,

及拋物線的定義得

,即.

因為上述表達式與點的縱坐標無關,所以只要將這點都取在軸的上方,則它們的縱坐標都大于零,則

,

,所以.

(說明:本質上只需構造滿足條件且的一組個不同的點,均為反例.)

③ 補充條件1:“點的縱坐標)滿足 ”,即:

“當時,若,且點的縱坐標)滿足,則”.此命題為真.事實上,設,

分別過作拋物線準線的垂線,垂足分別為,由,

及拋物線的定義得,即,則

,

又由,所以,故命題為真.

補充條件2:“點與點為偶數,關于軸對稱”,即:

“當時,若,且點與點為偶數,關于軸對稱,則”.此命題為真.(證略)

 

查看答案和解析>>

已知函數

(Ⅰ)求函數的單調區(qū)間;

(Ⅱ)設,若對任意,不等式 恒成立,求實數的取值范圍.

【解析】第一問利用的定義域是     

由x>0及 得1<x<3;由x>0及得0<x<1或x>3,

故函數的單調遞增區(qū)間是(1,3);單調遞減區(qū)間是

第二問中,若對任意不等式恒成立,問題等價于只需研究最值即可。

解: (I)的定義域是     ......1分

              ............. 2分

由x>0及 得1<x<3;由x>0及得0<x<1或x>3,

故函數的單調遞增區(qū)間是(1,3);單調遞減區(qū)間是     ........4分

(II)若對任意不等式恒成立,

問題等價于,                   .........5分

由(I)可知,在上,x=1是函數極小值點,這個極小值是唯一的極值點,

故也是最小值點,所以;            ............6分

當b<1時,;

時,;

當b>2時,;             ............8分

問題等價于 ........11分

解得b<1 或 或    即,所以實數b的取值范圍是 

 

查看答案和解析>>

(本小題滿分14分)

閱讀下面一段文字:已知數列的首項,如果當時,,則易知通項,前項的和. 將此命題中的“等號”改為“大于號”,我們得到:數列的首項,如果當時,,那么,且. 這種從“等”到“不等”的類比很有趣。由此還可以思考:要證,可以先證,而要證,只需證). 結合以上思想方法,完成下題:

已知函數,數列滿足,,若數列的前項的和為,求證:.

查看答案和解析>>

如圖,已知橢圓Γ:+=1(a>b>0)的左、右焦點分別是F1(-c,0)、F2(c,0),Q是橢圓外的一個動點,滿足|F1Q|=2a.點P是線段F1Q與該橢圓的交點,點M在線段F2Q上,且滿足=0,||≠0.
(Ⅰ)求點M的軌跡C的方程;
(Ⅱ)設不過原點O的直線l與軌跡C交于A,B兩點,若直線OA,AB,OB的斜率依次成等比數列,求△OAB面積的取值范圍;
(Ⅲ)由(Ⅱ)求解的結果,試對橢圓Γ寫出類似的命題.(只需寫出類似的命題,不必說明理由)

查看答案和解析>>


同步練習冊答案