21. 查看更多

 

題目列表(包括答案和解析)

(本小題滿分12分)二次函數(shù)的圖象經(jīng)過三點(diǎn).

(1)求函數(shù)的解析式(2)求函數(shù)在區(qū)間上的最大值和最小值

查看答案和解析>>

(本小題滿分12分)已知等比數(shù)列{an}中, 

   (Ⅰ)求數(shù)列{an}的通項(xiàng)公式an;

   (Ⅱ)設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,證明:;

   (Ⅲ)設(shè),證明:對(duì)任意的正整數(shù)n、m,均有

查看答案和解析>>

(本小題滿分12分)已知函數(shù),其中a為常數(shù).

   (Ⅰ)若當(dāng)恒成立,求a的取值范圍;

   (Ⅱ)求的單調(diào)區(qū)間.

查看答案和解析>>

(本小題滿分12分)

甲、乙兩籃球運(yùn)動(dòng)員進(jìn)行定點(diǎn)投籃,每人各投4個(gè)球,甲投籃命中的概率為,乙投籃命中的概率為

   (Ⅰ)求甲至多命中2個(gè)且乙至少命中2個(gè)的概率;

   (Ⅱ)若規(guī)定每投籃一次命中得3分,未命中得-1分,求乙所得分?jǐn)?shù)η的概率分布和數(shù)學(xué)期望.

查看答案和解析>>

(本小題滿分12分)已知是橢圓的兩個(gè)焦點(diǎn),O為坐標(biāo)原點(diǎn),點(diǎn)在橢圓上,且,圓O是以為直徑的圓,直線與圓O相切,并且與橢圓交于不同的兩點(diǎn)A、B.

   (1)求橢圓的標(biāo)準(zhǔn)方程;w.w.w.k.s.5.u.c.o.m        

   (2)當(dāng)時(shí),求弦長|AB|的取值范圍.

查看答案和解析>>

一、選擇題(本大題共12小題,每小題5分,共計(jì)60分)

1.D  2.B  3.A  4.B  5.C  6.C  7.B  8.C  9.D  10.A  11.D  12.D

    <thead id="ca6xa"></thead>
    1. <address id="ca6xa"></address>

      1,3,5

      13.-1     14.     15.     16.②③

      三、解答題(本大題共6小題,共計(jì)70分)

      17.(本小題滿分10分)

          解:化簡(jiǎn)條件得                               …………2分

          根據(jù)集合中元素個(gè)數(shù)集合B分類討論,

          當(dāng)

                                                                                          …………4分

          當(dāng)               …………6分

          當(dāng)                                                                        …………2分

                                                                                                                    …………8分

          綜上所述,                                                   …………10分

      18.(本小題滿分12分)

          解:

                            …………2分

          即                                                        …………4分

         

          即                                                                         …………8分

          又

                                                                       …………10分

         

                                                                                                                                    …………12分

      19.(本小題滿分12分)

          解:(1)取出的兩個(gè)球都是黑球,則甲盒恰好有兩個(gè)黑球的事件記為A1,

                                                                                         …………2分

          取出的兩個(gè)球都是紅球,則甲盒恰好有兩個(gè)黑球的事件記為A2,

                                                                                      …………4分

          所以                                                                   …………6分

         (2)                                                                  …………7分

                                                                                                           …………8分

                                                                                    …………9分

          ξ得分布列為

       

       

       

                                                                       …………12分

       

      20.(本小題滿分12分)

          證明:(I)在直三棱柱ABC-A1B1C1中,易知面ACC1A1⊥面ABC,

          ∵∠ACB = 90°,

      ∴BC⊥面ACC1A1,                                                                                 …………2分

      ∵AM面ACC1A1

      ∴BC⊥AM

      ∵AM⊥BA1,且BC∩BA1=B

      ∴AM⊥平面A1BC                                                                                           …………4分

         (II)設(shè)AM與A1C的交點(diǎn)為O,連結(jié)BO,由(I)可知AM⊥OB,且AM⊥OC,所以∠BOC為二面角B ? AM ? C的平在角                                                                                                      …………5分

          在Rt△ACM和Rt△A1AC中,∠OAC +∠ACO=90°,

          ∴∠AA1C =∠MAC

      ∴Rt△ACM∽R(shí)t△A1AC

      ∴AC2 = MC?AA1

                                                                                                               …………7分

      ,故所求二面角的大小為45°                                         …………9分

         (III)設(shè)點(diǎn)C到平面ABM的距離為h,易知BO=,

      可得                                        …………10分

      ∴點(diǎn)C到平面ABM的距離為                                                                   …………12分

      解法二:(I)同解法一

         (II)如圖以C為原點(diǎn),CA,CB,CC1所在直線分別為x軸,y軸,z軸,建立空間直角坐標(biāo)系,則

         

          即                                      …………6分

          設(shè)向量,則

          的平面AMB的一個(gè)法向量為

          是平面AMC的一個(gè)法向量                        …………8分

         

          易知,所夾的角等于二面角B ? AM ? C的大小,故所求二面角的大小為45°

                                                                                                                                           …………9分

         (III)向量即為所求距離     …………10分

                                                                                           …………12分

      ∴點(diǎn)C到平面ABM的距離為                                                                   …………12分

      21.(本小題滿分12分)

         (1)解:

          ,

          即                         …………3分

          ,

                                                         …………6分

         (II)由(I)及,                                     …………8分

          ,

                (1)

                (2)

         (2)-(1)得,

                                               …………10分

          要使

          成立的正整數(shù)n的最小值為5.                                …………12分

      22.(本小題滿分12分)

          解:(I)                             …………2分

          處的切線互相平行

                                                                                                              …………3分

         

                                                                                                                            …………4分

         (II)

         

                                                                                    …………5分

         

                                       …………7分

         

                                                                                                                 …………9分

          ∴滿足條件的a的值滿足下列不等式組

           ①,或

          不等式組①的解集為空集,解不等式組②得

          綜上所述,滿足條件的a的取值范圍是:                             …………12分

       

       

       

       

       


      同步練習(xí)冊(cè)答案