題目列表(包括答案和解析)
設的展開式的各項系數(shù)之和為M,二項式系數(shù)之和為N,若,則展開式中x3的系數(shù)為 .
設的展開式的各項系數(shù)之和為M,二項式系數(shù)之和為N,若M—N=240,則展開式中項的系數(shù)為( )
A.150 B.500 C.—150 D.—500
設的展開式的各項系數(shù)之和為M,二項式系數(shù)之和為N,若M,8,N三數(shù)成等比數(shù)列,則展開式中第四項為____
設的展開式的各項系數(shù)之和為M,二項式系數(shù)之和為N,若,則展開式中的系數(shù)為 。
設的展開式的各項系數(shù)之和為M,二項式系數(shù)之和為N,若,則展開式中的系數(shù)為 。
一.選擇題:
題號
1
2
3
4
5
6
7
8
答案
C
A
C
B
B
A
B
D
二.填空題:
9.6、30、10; 10.?5; 11.;
12.?250; 13.; 14.③④
三.解答題:
15.解: ; ………5分
方程有非正實數(shù)根
綜上: ……………………12分16.解:(I)設袋中原有個白球,由題意知
可得或(舍去)
答:袋中原有3個白球. 。。。。。。。。4分
(II)由題意,的可能取值為1,2,3,4,5
所以的分布列為:
1
2
3
4
5
。。。。。。。。。9分
(III)因為甲先取,所以甲只有可能在第一次,第三次和第5次取球,記”甲取到白球”為事件,則
答:甲取到白球的概率為.。。。。。。。。13分
17.解:(1)由=.=,∴=1;。。。。。。。。。4分
(2)任取、∈(1,+∞),且設<,則:
-=>0,
∴=在(1,+∞)上是單調(diào)遞減函數(shù);。。。。。。。。。8分
(3)當直線=(∈R)與的圖象無公共點時,=1,
∴<2+=4=,|-2|+>2,
得:>或<.。。。。。。。。13分
18.(Ⅰ)證明:∵底面,底面, ∴
又∵且平面,平面,,
∴平面;3分
(Ⅱ)解:∵點分別是的中點,
∴,由(Ⅰ)知平面,
∴平面,
∴,,
∴為二面角的平面角,
∵底面,∴與底面所成的角即為,
∴=,∵為直角三角形斜邊的中點,
∴為等腰三角形,且,∴;
(Ⅲ)過點作交于點,∵底面,
∴底面,為直線在底面上的射影,
要,由三垂線定理的逆定理有要 ,
設,則由得,
又∴在直角三角形中,,
∴,
∵ ∴,,
在直角三角形中,,
,即時,.
(Ⅲ)以點為坐標原點,建立如圖的直角坐標系,設,則,,設,則
則,,,
,時時,.
有 = =……(3分)
∴當時,,即
當時,函數(shù)f(x)是凸函數(shù). ……(4分)
(2) 當x=0時, 對于a∈R,有f(x)≤1恒成立;當x∈(0, 1]時, 要f(x)≤1恒成立
即, ∴ 恒成立,∵ x∈(0, 1], ∴ ≥1, 當=1時, 取到最小值為0,∴ a≤0, 又a≠0,∴ a的取值范圍是.
由此可知,滿足條件的實數(shù)a的取值恒為負數(shù),由(1)可知函數(shù)f(x)是凸函數(shù)………10分
(3)令則,∵,∴,……………..(11)分
令,則,故;
若,則
;,……………..(12)分
若,則 ∴;∴時,.
綜上所述,對任意的,都有;……………..(13)分
所以,不是R上的凸函數(shù). ……………..(14)分
對任意,有,
所以,不是上的凸函數(shù). ……………..(14)分
20. 解:(1)設數(shù)列的前項和為,則
……….4分
(2)為偶數(shù)時,
為奇數(shù)時,
………9分
(3)方法1、因為所以
當,時,,時
又由,兩式相減得
所以若,則有………..14分
方法2、由,兩式相減得
………..11分
所以要證明,只要證明
或①由:
所以…………………14分
或②由:
…………………14分
數(shù)學歸納法:①當
當
②當
當
綜上①②知若,則有.
所以,若,則有.。。。。。。。。。14分
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com