題目列表(包括答案和解析)
已知函數的圖象過坐標原點O,且在點處的切線的斜率是.
(Ⅰ)求實數的值;
(Ⅱ)求在區(qū)間上的最大值;
(Ⅲ)對任意給定的正實數,曲線上是否存在兩點P、Q,使得是以O為直角頂點的直角三角形,且此三角形斜邊中點在軸上?說明理由.
【解析】第一問當時,,則。
依題意得:,即 解得
第二問當時,,令得,結合導數和函數之間的關系得到單調性的判定,得到極值和最值
第三問假設曲線上存在兩點P、Q滿足題設要求,則點P、Q只能在軸兩側。
不妨設,則,顯然
∵是以O為直角頂點的直角三角形,∴
即 (*)若方程(*)有解,存在滿足題設要求的兩點P、Q;
若方程(*)無解,不存在滿足題設要求的兩點P、Q.
(Ⅰ)當時,,則。
依題意得:,即 解得
(Ⅱ)由(Ⅰ)知,
①當時,,令得
當變化時,的變化情況如下表:
0 |
|||||
— |
0 |
+ |
0 |
— |
|
單調遞減 |
極小值 |
單調遞增 |
極大值 |
單調遞減 |
又,,!在上的最大值為2.
②當時, .當時, ,最大值為0;
當時, 在上單調遞增。∴在最大值為。
綜上,當時,即時,在區(qū)間上的最大值為2;
當時,即時,在區(qū)間上的最大值為。
(Ⅲ)假設曲線上存在兩點P、Q滿足題設要求,則點P、Q只能在軸兩側。
不妨設,則,顯然
∵是以O為直角頂點的直角三角形,∴
即 (*)若方程(*)有解,存在滿足題設要求的兩點P、Q;
若方程(*)無解,不存在滿足題設要求的兩點P、Q.
若,則代入(*)式得:
即,而此方程無解,因此。此時,
代入(*)式得: 即 (**)
令 ,則
∴在上單調遞增, ∵ ∴,∴的取值范圍是。
∴對于,方程(**)總有解,即方程(*)總有解。
因此,對任意給定的正實數,曲線上存在兩點P、Q,使得是以O為直角頂點的直角三角形,且此三角形斜邊中點在軸上
已知向量(),向量,,
且.
(Ⅰ)求向量; (Ⅱ)若,,求.
【解析】本試題主要考查了向量的數量積的運算,以及兩角和差的三角函數關系式的運用。
(1)問中∵,∴,…………………1分
∵,得到三角關系是,結合,解得。
(2)由,解得,,結合二倍角公式,和,代入到兩角和的三角函數關系式中就可以求解得到。
解析一:(Ⅰ)∵,∴,…………1分
∵,∴,即 ① …………2分
又 ② 由①②聯立方程解得,,5分
∴ ……………6分
(Ⅱ)∵即,, …………7分
∴, ………8分
又∵, ………9分
, ……10分
∴.
解法二: (Ⅰ),…………………………………1分
又,∴,即,①……2分
又 ②
將①代入②中,可得 ③ …………………4分
將③代入①中,得……………………………………5分
∴ …………………………………6分
(Ⅱ) 方法一 ∵,,∴,且……7分
∴,從而. …………………8分
由(Ⅰ)知, ; ………………9分
∴. ………………………………10分
又∵,∴, 又,∴ ……11分
綜上可得 ………………………………12分
方法二∵,,∴,且…………7分
∴. ……………8分
由(Ⅰ)知, . …………9分
∴ ……………10分
∵,且注意到,
∴,又,∴ ………………………11分
綜上可得 …………………12分
(若用,又∵ ∴ ,
17世紀,科學家們致力于運動的研究,如計算天體的位置,遠距離航海中對經度和緯度的測量,炮彈的速度對于高度和射程的影響等.諸如此類的問題都需要探究兩個變量之間的關系,并根據這種關系對事物的變化規(guī)律作出判斷,如根據炮彈的速度推測它能達到的高度和射程.這正是函數產生和發(fā)展的背景.
“function”一詞最初由德國數學家萊布尼茲(G.W.Leibniz,1646~1716)在1692年使用.在中國,清代數學家李善蘭(1811~1882)在1859年和英國傳教士偉烈亞力合譯的《代徽積拾級》中首次將“function”譯做“函數”.
萊布尼茲用“函數”表示隨曲線的變化而改變的幾何量,如坐標、切線等.1718年,他的學生,瑞士數學家約翰·伯努利(J.Bernoulli,1667~1748)強調函數要用公式表示.后來,數學家認為這不是判斷函數的標準.只要一些變量變化,另一些變量隨之變化就可以了.所以,1755年,瑞士數學家歐拉(L.Euler,1707~1783)將函數定義為“如果某些變量,以一種方式依賴于另一些變量,我們將前面的變量稱為后面變量的函數”.
當時很多數學家對于不用公式表示函數很不習慣,甚至抱懷疑態(tài)度.函數的概念仍然是比較模糊的.
隨著對微積分研究的深入,18世紀末19世紀初,人們對函數的認識向前推進了.德國數學家狄利克雷(P.G.L.Dirichlet,1805~1859)在1837年時提出:“如果對于x的每一個值,y總有一個完全確定的值與之對應,則y是x的函數”.這個定義較清楚地說明了函數的內涵.只要有一個法則,使得取值范圍中的每一個值,有一個確定的y和它對應就行了,不管這個法則是公式、圖象、表格還是其他形式.19世紀70年代以后,隨著集合概念的出現,函數概念又進而用更加嚴謹的集合和對應語言表述,這就是本節(jié)學習的函數概念.
綜上所述可知,函數概念的發(fā)展與生產、生活以及科學技術的實際需要緊密相關,而且隨著研究的深入,函數概念不斷得到嚴謹化、精確化的表達,這與我們學習函數的過程是一樣的.
你能以函數概念的發(fā)展為背景,談談從初中到高中學習函數概念的體會嗎?
1.探尋科學家發(fā)現問題的過程,對指導我們的學習有什么現實意義?
2.萊布尼茲、狄利克雷等科學家有哪些品質值得我們學習?
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com