直線 與所成的角等于 查看更多

 

題目列表(包括答案和解析)

直線與拋物線:交于兩點(diǎn),點(diǎn)是拋物線準(zhǔn)線上的一點(diǎn),

,其中為拋物線的頂點(diǎn).

(1)當(dāng)平行時(shí),________;

(2)給出下列命題:

,不是等邊三角形;

,使得垂直;

③無(wú)論點(diǎn)在準(zhǔn)線上如何運(yùn)動(dòng),總成立.

其中,所有正確命題的序號(hào)是___.

 

查看答案和解析>>

直線與拋物線:交于兩點(diǎn),點(diǎn)是拋物線準(zhǔn)線上的一點(diǎn),
,其中為拋物線的頂點(diǎn).
(1)當(dāng)平行時(shí),________;
(2)給出下列命題:
,不是等邊三角形;
,使得垂直;
③無(wú)論點(diǎn)在準(zhǔn)線上如何運(yùn)動(dòng),總成立.
其中,所有正確命題的序號(hào)是___.

查看答案和解析>>

直線與拋物線:交于兩點(diǎn),點(diǎn)是拋物線準(zhǔn)線上的一點(diǎn),
,其中為拋物線的頂點(diǎn).
(1)當(dāng)平行時(shí),________;
(2)給出下列命題:
,不是等邊三角形;
,使得垂直;
③無(wú)論點(diǎn)在準(zhǔn)線上如何運(yùn)動(dòng),總成立.
其中,所有正確命題的序號(hào)是___.

查看答案和解析>>

設(shè)直線系M:xcosθ+(y-2)sinθ=1(0≤θ≤2π),對(duì)于下列四個(gè)命題:A、存在一個(gè)圓與所有直線相交;B、存在一個(gè)圓與所有直線不相交;C、存在一個(gè)圓與所有直線相切;D、M中的直線所能圍成的正三角形面積都相等
其中真命題的代號(hào)是
 
(寫出所有真命題的代號(hào)).

查看答案和解析>>

設(shè)直線系M:xcosθ+(y-2)sinθ=1(0≤θ≤2π),則下列命題中是真命題的個(gè)數(shù)是(  )
①存在一個(gè)圓與所有直線相交②存在一個(gè)圓與所有直線不相交;
③存在一個(gè)圓與所有直線相切④M中所有直線均經(jīng)過一個(gè)定點(diǎn);
⑤不存在定點(diǎn)P不在M中的任一條直線上;
⑥對(duì)于任意整數(shù)n(n≥3),存在正n邊形,其所有邊均在M中的直線上;
⑦M(jìn)中的直線所能圍成的正三角形面積都相等.
A、3B、4C、5D、6

查看答案和解析>>

一、選擇題:

   1.D  2.A  3.B  4.B   5.A  6.C  7.D   8.C   9.B  10.B  11.C  12.B

      2,4,6

      13.    14.7   15.2    16.

      17.17.解:(1)  --------------------2分

       --------------------4分

      --------------------6分

      .--------------------8分

      當(dāng)時(shí)(9分),取最大值.--------------------10分

      (2)當(dāng)時(shí),,即,--------------------11分

      解得,.-------------------- 12分

      18.解法一 “有放回摸兩次,顏色不同”指“先白再黑”或“先黑再白”,記“有放回摸球兩次,兩球恰好顏色不同”為事件A,

      ∵“兩球恰好顏色不同”共2×4+4×2=16種可能,

      解法二  “有放回摸取”可看作獨(dú)立重復(fù)實(shí)驗(yàn)∵每次摸出一球得白球的概率為

      ∴“有放回摸兩次,顏色不同”的概率為

      (2)設(shè)摸得白球的個(gè)數(shù)為,依題意得

      19.方法一

       

         (2)

      20.解:(1)

        ∵ x≥1. ∴ ,-----------------------------------------------------2分

         (當(dāng)x=1時(shí),取最小值).

        ∴ a<3(a=3時(shí)也符合題意). ∴ a≤3.------------------------------------4分

        (2),即27-6a+3=0, ∴ a=5,.------------6分

      ,或 (舍去) --------------------------8分

      當(dāng)時(shí),; 當(dāng)時(shí),

        即當(dāng)時(shí),有極小值.又    ---------10分

         ∴ fx)在,上的最小值是,最大值是. ----------12分

      21.解:(Ⅰ)∵,∴,

      ∵數(shù)列{}的各項(xiàng)均為正數(shù),∴

      ,

      ),所以數(shù)列{}是以2為公比的等比數(shù)列.………………3分

      的等差中項(xiàng),

      ,

      ,∴,

      ∴數(shù)列{}的通項(xiàng)公式.……………………………………………………6分

         (Ⅱ)由(Ⅰ)及=得,, ……………………………8分

      ,

            1

         ②

      ②-1得,

      =……………………………10分

      要使S>50成立,只需2n+1-2>50成立,即2n+1>52,n³5

      ∴使S>50成立的正整數(shù)n的最小值為5. ……………………………12分

      22.解:(Ⅰ)由已知得

       

                    …………4分

        (Ⅱ)設(shè)P點(diǎn)坐標(biāo)為(x,y)(x>0),由

              

                             …………5分    

               ∴   消去m,n可得

                   ,又因     8分 

              ∴ P點(diǎn)的軌跡方程為  

              它表示以坐標(biāo)原點(diǎn)為中心,焦點(diǎn)在軸上,且實(shí)軸長(zhǎng)為2,焦距為4的雙曲線

      的右支             …………9分

      (Ⅲ)設(shè)直線l的方程為,將其代入C的方程得

              

              即                          

       易知(否則,直線l的斜率為,它與漸近線平行,不符合題意)

              又     

             設(shè),則

             ∵  l與C的兩個(gè)交點(diǎn)軸的右側(cè)

                

             ∴ ,即     

      又由  同理可得       …………11分

              由

             

           ∴

         由

                 

        由

                 

      消去

      解之得: ,滿足                …………13分

      故所求直線l存在,其方程為:  …………14分

       

       


      同步練習(xí)冊(cè)答案