19.如圖.在四棱錐P―ABCD中.PA⊥底面ABCD.PA=AD=CD.BC=2AD.BC//AD.AD⊥DC. 查看更多

 

題目列表(包括答案和解析)

(本小題滿分12分)如圖,在四棱錐P—ABCD中,側(cè)面PAD是正三角形,且垂直于底面ABCD,底面ABCD是邊長為2的菱形,∠BAD=60°,M為PC上一點,且PA//平面BDM,

   (1)求證:M為PC的中點;

   (2)求證:面ADM⊥面PBC。

查看答案和解析>>

(本小題滿分12分)

如圖,在四棱錐中,底面四邊長為1的

 菱形,,

的中點.

(Ⅰ)求異面直線AB與MD所成角的大小;

(Ⅱ)求點B到平面OCD的距離.

查看答案和解析>>

(本小題滿分12分)如圖,在四棱錐V—ABCD中,底面ABCD是矩形,側(cè)棱VA⊥底面ABCD,E、F、G分別為VA、VB、BC的中點。(I)求證:平面EFG//平面VCD;   (II)當二面角V—BC—A、V—DC—A分別為45°、30°時,求直線VB與平面EFG所成的角。

查看答案和解析>>

(本小題滿分12分)

        如圖,在四棱錐S—ABCD中,底面ABCD為矩形,SA⊥平面ABCD,二面角S—

CD—A的平面角為,M為AB中點,N為SC中點.

   (1)證明:MN//平面SAD;

   (2)證明:平面SMC⊥平面SCD;

 
   (3)若,求實數(shù)的值,使得直線SM與平面SCD所成角為

查看答案和解析>>

(本小題滿分12分)如圖,在四棱錐中,底面是正方形,側(cè)面是正三角形,平面底面.證明:平面;

  

查看答案和解析>>

一、選擇題:

   1.D  2.A  3.B  4.B   5.A  6.C  7.D   8.C   9.B  10.B  11.C  12.B

<progress id="xb5ff"><strong id="xb5ff"><output id="xb5ff"></output></strong></progress>

  • <delect id="xb5ff"></delect>

      2,4,6

      13.    14.7   15.2    16.

      17.17.解:(1)  --------------------2分

       --------------------4分

      --------------------6分

      .--------------------8分

      時(9分),取最大值.--------------------10分

      (2)當時,,即,--------------------11分

      解得,.-------------------- 12分

      18.解法一 “有放回摸兩次,顏色不同”指“先白再黑”或“先黑再白”,記“有放回摸球兩次,兩球恰好顏色不同”為事件A,

      ∵“兩球恰好顏色不同”共2×4+4×2=16種可能,

      解法二  “有放回摸取”可看作獨立重復(fù)實驗∵每次摸出一球得白球的概率為

      ∴“有放回摸兩次,顏色不同”的概率為

      (2)設(shè)摸得白球的個數(shù)為,依題意得

      19.方法一

       

         (2)

      20.解:(1)

        ∵ x≥1. ∴ ,-----------------------------------------------------2分

         (當x=1時,取最小值).

        ∴ a<3(a=3時也符合題意). ∴ a≤3.------------------------------------4分

       。2),即27-6a+3=0, ∴ a=5,.------------6分

      ,或 (舍去) --------------------------8分

      時,; 當時,

        即當時,有極小值.又    ---------10分

         ∴ fx)在上的最小值是,最大值是. ----------12分

      21.解:(Ⅰ)∵,∴,

      ∵數(shù)列{}的各項均為正數(shù),∴

      ,

      ),所以數(shù)列{}是以2為公比的等比數(shù)列.………………3分

      的等差中項,

      ,∴,

      ∴數(shù)列{}的通項公式.……………………………………………………6分

         (Ⅱ)由(Ⅰ)及=得,, ……………………………8分

      ,

            1

         ②

      ②-1得,

      =……………………………10分

      要使S>50成立,只需2n+1-2>50成立,即2n+1>52,n³5

      ∴使S>50成立的正整數(shù)n的最小值為5. ……………………………12分

      22.解:(Ⅰ)由已知得

       

                    …………4分

        (Ⅱ)設(shè)P點坐標為(x,y)(x>0),由

              

                             …………5分    

               ∴   消去m,n可得

                   ,又因     8分 

              ∴ P點的軌跡方程為  

              它表示以坐標原點為中心,焦點在軸上,且實軸長為2,焦距為4的雙曲線

      的右支             …………9分

      (Ⅲ)設(shè)直線l的方程為,將其代入C的方程得

              

              即                          

       易知(否則,直線l的斜率為,它與漸近線平行,不符合題意)

              又     

             設(shè),則

             ∵  l與C的兩個交點軸的右側(cè)

                

             ∴ ,即     

      又由  同理可得       …………11分

              由

             

           ∴

         由

                 

        由

                 

      消去

      解之得: ,滿足                …………13分

      故所求直線l存在,其方程為:  …………14分

       

       


      同步練習冊答案